A259759 Triangle read by rows: T(n,k) = number of partial idempotent mappings (of an n-chain) with collapse exactly k.
1, 2, 0, 4, 0, 2, 8, 0, 12, 3, 16, 0, 48, 24, 16, 32, 0, 160, 120, 160, 65, 64, 0, 480, 480, 960, 780, 336, 128, 0, 1344, 1680, 4480, 5460, 4704, 1897, 256, 0, 3584, 5376, 17920, 29120, 37632, 30352, 11824, 512, 0, 9216, 16128, 64512, 131040, 225792, 273168, 212832, 80145
Offset: 0
Examples
T (3,2) = 12 because there are exactly 12 partial idempotent mappings (of a 3-chain) with collapse exactly 2, namely: (123-->113), (123-->121), (123-->122), (123-->223), (123-->133), (123--> 323), (12-->11), (12-->22), (23-->22), (23-->33), (13-->11), (13-->33). Triangle starts: 1; 2,0; 4,0,2; 8,0,12,3; 16,0,48,24,16; ...
References
- F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).
Programs
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)*sum(r=k, n, binomial(n-k,r-k)*sum(j=0, k, binomial(k,j)*stirling(k-j,j,2)*j!)), ", ");); print(););} \\ Michel Marcus, Jul 15 2015
Formula
T(n,k) = binomial(n,k)Sum_{r=k}^n binomial(n-k,r-k)Sum_{j=0}^k binomial(k,j)S(k-j,j)j!, where S (x,y) is the Stirling numbers of the second kind, which gives the number of ways to partition x into y nonempty subsets.
Extensions
More terms from Michel Marcus, Jul 15 2015