A259771 Expansion of x * psi(x^5) * f(-x^10) / f(-x^2,-x^8) in powers of x where psi(), f() are Ramanujan theta functions.
1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 3, 4, 4, 5, 4, 6, 5, 7, 7, 9, 8, 10, 10, 12, 12, 15, 14, 18, 17, 20, 20, 24, 24, 28, 28, 33, 33, 38, 38, 44, 45, 50, 52, 59, 60, 68, 69, 78, 80, 89, 92, 102, 105, 116, 120, 133, 137, 151, 156, 171, 178, 194, 201
Offset: 1
Keywords
Examples
G.f. = x + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 2*x^11 + x^12 + ... G.f. = q^49 + q^289 + q^529 + q^649 + q^769 + q^889 + 2*q^1009 + q^1129 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 20
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ x Product[ (1 - x^k)^{ 0, -1, 0, 0, -1, 0, 0, -1, 0, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; QP:= QPochhammer; a[n_]:= SeriesCoefficient[ x*QP[x^10]/(QP[x^5, x^10]* QP[x^2, x^10]*QP[x^8, x^10]), {x, 0, n}]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Mar 16 2018 *)
-
PARI
{a(n) = if( n<1, 0, n--; polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 0, -1, 0, 0, -1, 0, 0, -1, 0][k%10 + 1]), n))};
Comments