cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259771 Expansion of x * psi(x^5) * f(-x^10) / f(-x^2,-x^8) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 3, 4, 4, 5, 4, 6, 5, 7, 7, 9, 8, 10, 10, 12, 12, 15, 14, 18, 17, 20, 20, 24, 24, 28, 28, 33, 33, 38, 38, 44, 45, 50, 52, 59, 60, 68, 69, 78, 80, 89, 92, 102, 105, 116, 120, 133, 137, 151, 156, 171, 178, 194, 201
Offset: 1

Views

Author

Michael Somos, Jul 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The g.f. for this sequence is the last term of the 14th equation on page 20 of Ramanujan 1988.

Examples

			G.f. = x + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 2*x^11 + x^12 + ...
G.f. = q^49 + q^289 + q^529 + q^649 + q^769 + q^889 + 2*q^1009 + q^1129 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 20

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x Product[ (1 - x^k)^{ 0, -1, 0, 0, -1, 0, 0, -1, 0, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
    QP:= QPochhammer; a[n_]:= SeriesCoefficient[ x*QP[x^10]/(QP[x^5, x^10]* QP[x^2, x^10]*QP[x^8, x^10]), {x, 0, n}]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Mar 16 2018 *)
  • PARI
    {a(n) = if( n<1, 0, n--; polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 0, -1, 0, 0, -1, 0, 0, -1, 0][k%10 + 1]), n))};

Formula

Euler transform of period 10 sequence [ 0, 1, 0, 0, 1, 0, 0, 1, 0, -1, ...].
a(n) = A053265(n-1) - A053267(n).