cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259897 a(n) is the 2-adic valuation of phi(binomial(2*n,n)).

Original entry on oeis.org

0, 0, 1, 3, 3, 3, 4, 6, 6, 10, 9, 11, 10, 11, 11, 14, 12, 10, 11, 13, 14, 17, 17, 17, 16, 16, 18, 20, 22, 23, 21, 23, 20, 24, 21, 21, 20, 22, 24, 23, 22, 21, 22, 26, 26, 30, 31, 32, 30, 35, 34, 33, 31, 33, 34, 34, 33, 37, 38, 40, 42, 42, 44, 46, 42, 42, 43, 45
Offset: 0

Views

Author

Vladimir Shevelev, Jul 07 2015

Keywords

Comments

The 2-adic valuation (or 2-adic order) of n>=1 is the highest exponent k such that 2^k divides n. Below we also write 2^k||n.
Since the number of primes in the interval (n, 2*n) tends to infinity as n goes to infinity, a(n) also tends to infinity (see formula).
By Kummer's theorem (link [Wikipedia]), a prime p divides binomial(2*n,n) if and only if there is a carry in adding n+n in base p.

Examples

			Let n=9, binomial(18,9) = 48620. Here
c(n)=2, Sum_{9 < prime p < 18)c_p = 7,
Sum_{2 < prime p < 18)c_p = 11. So 8<=a(9) <= 11.
		

Crossrefs

Programs

  • Maple
    seq(padic:-ordp(numtheory:-phi(binomial(2*n,n)),2), n= 0 .. 100); # Robert Israel, Jul 10 2015
  • Mathematica
    Map[IntegerExponent[EulerPhi[Binomial[2#,#]],2]&,Range[0,100]]
  • PARI
    vector(80, n, n--; valuation(eulerphi(binomial(2*n,n)), 2)) \\ Michel Marcus, Jul 11 2015
    
  • Python
    from math import comb
    from sympy import totient
    def A259897(n): return (~(m:=totient(comb(2*n,n)))& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

c(n)-1 + Sum_{n < prime p < 2*n)c_p <= a(n) <= Sum_{2 < prime p < 2 *n)c_p, n>1, where 2^c(n)|| binomial(2*n,n) (note that c(n) = A000120(n)) and 2^c_p || p-1.
a(n) = (number of carries in binary addition of n+n) - 1 + Sum(p in S, A007814(p-1)) where S is the set of odd primes p < 2n such that at least one of the base-p digits of n is greater than (p-1)/2. - Robert Israel, Jul 10 2015
a(n) = A007814(A000010(A000984(n))). - Robert Israel, Jul 10 2015

Extensions

More terms from Peter J. C. Moses, Jul 07 2015

A259922 a(n)= Sum_{2 < prime p <= n} c_p - Sum_{n < prime p < 2*n} c_p, where 2^c_p is the greatest power of 2 dividing p-1.

Original entry on oeis.org

0, -1, -1, -2, 2, 1, 1, 1, -3, -4, -2, -3, 1, 1, -1, -2, 6, 6, 6, 6, 3, 2, 4, 3, 3, 3, 1, 1, 5, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 8, 7, 9, 9, 6, 6, 8, 8, 3, 3, 1, 0, 4, 3, 1, 1, -3, -3, -1, -1, 3, 3, 3, 2, 2, 1, 3, 3, 0, -1, 1, 1, 7, 7, 5, 4, 4, 4, 4, 4, 4, 3
Offset: 1

Views

Author

Vladimir Shevelev, Jul 09 2015

Keywords

Comments

It is known that, for n>10, pi(2*n) < 2*pi(n), where pi(n) is the number of primes not exceeding n (A000720). Thus, for n>10, in the interval (1,n] we have more primes than in the interval (n,2*n).
In connection with this, it is natural to conjecture that there exists a number N such that a(n)>0 for all n >= N.

Crossrefs

Programs

  • Mathematica
    Map[Total[Flatten[Map[IntegerExponent[Select[#,PrimeQ]-1,2]&,{Range[3,#],Range[#+1,2#-1]}]{1,-1}]]&,Range[50]]

Extensions

More terms from Peter J. C. Moses, Jul 09 2015
Showing 1-2 of 2 results.