cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259823 a(0)=0, a(1)=1, a(n)=min{3 a(k) + 2^(n-k)-1, k=0..(n-1)} for n>=2.

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 24, 33, 45, 61, 79, 103, 130, 162, 198, 246, 300, 364, 436, 517, 613, 721, 849, 993, 1155, 1347, 1563, 1806, 2062, 2350, 2674, 3058, 3490, 3976, 4488, 5064, 5712, 6441, 7209, 8073, 9045, 10069, 11221, 12517, 13975, 15511, 17239, 19183
Offset: 0

Views

Author

Gheorghe Coserea, Jul 05 2015

Keywords

Comments

The sequence of first differences is A003586.

Crossrefs

Programs

  • Haskell
    a259823 n = a259823_list !! n
    a259823_list = scanl (+) 0 a003586_list
    -- Reinhard Zumkeller, Jul 19 2015
  • Mathematica
    a[n_] := a[n] = Min[ Table[ 3*a[k] + 2^(n-k) - 1, {k, 0, n-1}]]; a[0] = 0; Table[a[n], {n, 0, 60}]

Formula

a(n) = min {3*a(k) + 2^(n-k)-1; k < n}.
a(n) = Sum_{i=0..n-1} A003586(i).