A259830 Decimal expansion of the length of the "double egg" curve (length of one egg with diameter a = 1).
2, 7, 6, 0, 3, 4, 5, 9, 9, 6, 3, 0, 0, 9, 4, 6, 3, 4, 7, 5, 3, 1, 0, 9, 4, 2, 5, 4, 8, 8, 0, 4, 0, 5, 8, 2, 4, 2, 0, 1, 6, 2, 7, 7, 3, 0, 9, 4, 7, 1, 7, 6, 4, 2, 7, 0, 2, 0, 5, 7, 0, 6, 7, 0, 2, 6, 0, 0, 5, 5, 1, 2, 2, 6, 5, 4, 9, 1, 0, 7, 5, 3, 0, 2, 8, 4, 5, 8, 3, 6, 4, 7, 9, 8, 4, 8, 7, 3, 4, 6, 7, 1, 5
Offset: 1
Examples
2.76034599630094634753109425488040582420162773094717642702057067026...
Links
- Robert Ferréol (MathCurve), Oeuf double, Double egg, Doppeleikurve [in French]
- Jürgen Köller (Mathematische Basteleien), Egg Curves and Ovals
Programs
-
Mathematica
L[a_] := (a/3)*(6 + Sqrt[3]*Log[2 + Sqrt[3]]); RealDigits[L[1], 10, 103] // First
-
PARI
(6 + sqrt(3)*log(2 + sqrt(3)))/3 \\ Michel Marcus, Jul 06 2015
Formula
Polar equation: r(t) = a*cos(t)^2.
Cartesian equation: (x^2+y^2)^3 = a^2*x^4.
Area of one egg: A(a) = 3*Pi*a^2/16.
Length of one egg: L(a) = (a/3)*(6 + sqrt(3)*log(2 + sqrt(3))).
Comments