A259836 Integers n where n^3 + (n+1)^3 is a Taxicab number A001235.
9, 121, 235, 301, 1090, 1293, 1524, 3152, 8010, 15556, 15934, 19247, 20244, 21498, 24015, 25363, 25556, 45462, 57872, 63758, 80016, 93349, 94701, 101929, 113098, 119942, 132414, 143653, 167147, 186540, 192629, 229508, 246122, 247318, 292154, 307534, 322870
Offset: 1
Keywords
Examples
9^3 + 10^3 = 1729 = A001235(1), so 9 is in the sequence.
Links
- David Rabahy and Alois P. Heinz and Chai Wah Wu, Table of n, a(n) for n = 1..90 (first 38 terms from David Rabahy, next 12 terms from Alois P. Heinz)
Programs
-
Maple
filter:= proc(n) local D, b, a, Q; D:= numtheory:-divisors(n); for b in D do a:= n/b; Q:= 12*b - 3*a^2; if Q > 9 and issqr(Q) and Q < 9*a^2 then return true fi od; false end proc: select(x -> filter(x^3 +(x+1)^3), [$1..100000]); # Robert Israel, Jul 07 2015
-
Mathematica
Select[Range[10000], Length[PowersRepresentations[#^3 + (# + 1)^3, 2, 3]]==2 &] (* Vincenzo Librandi, Jul 10 2015 *)
-
Python
from _future_ import division from gmpy2 import is_square from sympy import divisors A259836_list = [] for n in range(10000): m = n**3+(n+1)**3 for x in divisors(m): x2 = x**2 if x2 > m: break if x != (2*n+1) and m < x*x2 and is_square(12*m//x-3*x2): A259836_list.append(n) break # Chai Wah Wu, Jan 10 2016