A259843 Number of 1 elements in all n X n Tesler matrices of nonnegative integers.
1, 3, 15, 117, 1367, 23329, 570933, 19740068, 951916938, 63295826369, 5743788894259, 704672958229270, 115877288304781885, 25338423080304873558, 7313716095786704678585, 2767636572798780219442327, 1364367542961142350256304582, 871016593387715393187604249892
Offset: 1
Keywords
Examples
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing three 1's, thus a(2) = 3.
Crossrefs
Column k=1 of A259841.
Programs
-
Maple
g:= u-> `if`(u=1, 1, 0): b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0, (p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add( (p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l))) , j=0..n))))(nops(l)) end: a:= n-> b(1, n-1, [0$(n-1)])[2]: seq(a(n), n=1..14);
-
Mathematica
g[u_] := If[u == 1, 1, 0]; b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0, # + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]] ], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]]; a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* Jean-François Alcover, May 15 2022, after Alois P. Heinz *)
Formula
a(n) = A259841(n,1).
Comments