cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259844 Number A(n,k) of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with k = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 22, 40, 1, 1, 1, 5, 50, 351, 357, 1, 1, 1, 6, 95, 1686, 11275, 4820, 1, 1, 1, 7, 161, 5796, 138740, 689146, 96030, 1, 1, 1, 8, 252, 16072, 1010385, 25876312, 76718466, 2766572, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2015

Keywords

Comments

A(n,k) counts generalized Tesler matrices. For the definition of Tesler matrices see A008608.

Examples

			A(2,2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4].
Square array A(n,k) begins:
  1,   1,     1,      1,       1,       1, ...
  1,   1,     1,      1,       1,       1, ...
  1,   2,     3,      4,       5,       6, ...
  1,   7,    22,     50,      95,     161, ...
  1,  40,   351,   1686,    5796,   16072, ...
  1, 357, 11275, 138740, 1010385, 5244723, ...
		

Crossrefs

Columns k=0-2 give: A000012, A008608, A259919.
Rows n=0+1,2-3 give: A000012, A000027(k+1), A002412(k+1).

Programs

  • Maple
    b:= proc(n, i, l, k) option remember; (m-> `if`(m=0, 1,
          `if`(i=0, b(l[1]+k, m-1, subsop(1=NULL, l), k), add(
          b(n-j, i-1, subsop(i=l[i]+j, l), k), j=0..n))))(nops(l))
        end:
    A:= (n, k)-> b(k, n-1, [0$(n-1)], k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, i_, l_List, k_] := b[n, i, l, k] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + k, m-1, ReplacePart[l, 1 -> Sequence[]], k], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]]+j], k], {j, 0, n}]]]][Length[l]]; A[n_, k_] := b[k, n-1, Array[0&, n-1], k]; A[0, ] = A[, 0] = 1; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)