cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008608 Number of n X n upper triangular matrices A of nonnegative integers such that a_1i + a_2i + ... + a_{i-1,i} - a_ii - a_{i,i+1} - ... - a_in = -1.

Original entry on oeis.org

1, 2, 7, 40, 357, 4820, 96030, 2766572, 113300265, 6499477726, 515564231770, 55908184737696, 8203615387086224, 1613808957720017838, 422045413500096791377, 145606442599303799948900, 65801956684134601408784992, 38698135339344702725297294600, 29437141738828506134939056167071, 28800381656420765181010517468370560
Offset: 1

Views

Author

Glenn P. Tesler (gptesler(AT)euclid.ucsd.edu)

Keywords

Comments

Garsia and Haglund call these Tesler matrices. - N. J. A. Sloane, Jul 04 2014
This is also the value of the type A_n Kostant partition function evaluated at (1,1,...,1,-n) in ZZ^(n+1). This is the number of ways of writing the vector (1,1,...,1,-n) in ZZ^(n+1) as a linear combination with nonnegative integer coefficients of the vectors e_i - e_j, for 1 <= iAlejandro H. Morales, Mar 11 2014

Examples

			For n = 3 there are seven matrices: [[1,0,0],[0,1,0],[0,0,1]], [[1,0,0],[0,0,1],[0,0,2]], [[0,0,1],[0,1,0],[0,0,2]], [[0,0,1],[0,0,1],[0,0,3]], [[0,1,0],[0,2,0],[0,0,1]], [[0,1,0],[0,1,1],[0,0,2]], [[0,1,0],[0,0,2],[0,0,3]], so a(3) = 7. - _Alejandro H. Morales_, Jul 03 2015
		

Crossrefs

Row sums of A259786.
Main diagonal (shifted) of A259841.
Column k=1 of A259844.

Programs

  • Maple
    multcoeff:=proc(n,f,coeffv,k)
       local i,currcoeff;
       currcoeff:=f;
       for i from 1 to n do
          currcoeff:=`if`(coeffv[i]=0,coeff(series(currcoeff, x[i],k),x[i],0), coeff(series(currcoeff,x[i],k),x[i]^coeffv[i]));
       end do;
       return currcoeff;
    end proc:
    F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1),j=i+1..n),i=1..n):
    a := n -> multcoeff(n+1,F(n+1),[seq(1,i=1..n),-n],n+2):
    seq(a(i),i=2..7) # Alejandro H. Morales, Mar 11 2014, Jun 28 2015
    # second Maple program:
    b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1,
          `if`(i=0, b(l[1]+1, m-1, subsop(1=NULL, l)), add(
          b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
        end:
    a:= n-> b(1, n-1, [0$(n-1)]):
    seq(a(n), n=1..14);  # Alois P. Heinz, Jul 05 2015
  • Mathematica
    b[n_, i_, l_List] := b[n, i, l] = Function[{m}, If[m==0, 1, If[i==0, b[l[[1]]+1, m-1, ReplacePart[l, 1 -> Sequence[]]], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]][Length[l]]; a[n_] := b[1, n-1, Array[0&, n-1]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Jul 16 2015, after Alois P. Heinz *)

Extensions

a(7)-a(13) from Alejandro H. Morales, Mar 12 2014
a(14) from Alejandro H. Morales, Jun 04 2015
a(15)-a(22) from Alois P. Heinz, Jul 05 2015

A257661 Number of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with (Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h}) in {-1,+1} for all h in {1,...,n}.

Original entry on oeis.org

1, 1, 3, 13, 91, 957, 14883, 335685, 10809115, 489983429, 30878036187, 2674610665285, 315157973368499, 50044685318592821, 10616892819871806779, 2985356872553448786917, 1104511676749585428665683, 534037023412133157982099237, 335321015907953576212969151451
Offset: 0

Views

Author

Alois P. Heinz, Jul 12 2015

Keywords

Examples

			a(2) = 3: [1,0; 0,1], [0,1; 0,0], [0,1; 0,2].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1,
          `if`(i=0, b(l[1]+1, m-1, subsop(1=NULL, l))+
          `if`(l[1]=0, 0, b(l[1]-1, m-1, subsop(1=NULL, l))),
          add(b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
        end:
    a:= n-> b(1, n-1, [0$(n-1)]):
    seq(a(n), n=0..14);
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = With[{m = Length[l]}, If[m == 0, 1, If[i == 0, b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]] + If[l[[1]] == 0, 0, b[l[[1]] - 1, m - 1, ReplacePart[l, 1 -> Nothing]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]];
    a[n_] :=  b[1, n - 1, Table[0, {n - 1}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)

A259919 Number of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with 2 = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}.

Original entry on oeis.org

1, 1, 3, 22, 351, 11275, 689146, 76718466, 15016410213, 5018597151979, 2793390337774000, 2534303740130716491, 3677548139455638020060, 8393668597786379602398164, 29683833854927200499142474520, 160463839044675821511377573062150, 1309702228155431081923017737636343876
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2015

Keywords

Comments

a(n) counts generalized Tesler matrices. For the definition of Tesler matrices see A008608.

Examples

			a(2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4].
		

Crossrefs

Column k=2 of A259844.
Cf. A008608.

Programs

  • Maple
    b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1,
          `if`(i=0, b(l[1]+2, m-1, subsop(1=NULL, l)), add(
          b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
        end:
    a:= n-> b(2, n-1, [0$(n-1)]):
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = With[{m = Length[l]}, If[m == 0, 1,
         If[i == 0, b[l[[1]] + 2, m - 1, ReplacePart[l, 1 -> Nothing]], Sum[
         b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]];
    a[n_] := If[n <= 1, 1, b[2, n - 1, Array[0&, n - 1]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 14}] (* Jean-François Alcover, May 17 2022, after Alois P. Heinz *)
Showing 1-3 of 3 results.