A259841
Number T(n,k) of elements k in all n X n Tesler matrices of nonnegative integers; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 15, 5, 2, 117, 37, 17, 7, 1367, 418, 189, 100, 40, 23329, 7027, 3058, 1688, 939, 357, 570933, 171428, 72194, 39274, 24050, 13429, 4820, 19740068, 5948380, 2449366, 1293768, 807576, 517548, 283510, 96030
Offset: 1
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing three 1's and one 2, thus row 2 gives [3, 1].
Triangle T(n,k) begins:
1;
3, 1;
15, 5, 2;
117, 37, 17, 7;
1367, 418, 189, 100, 40;
23329, 7027, 3058, 1688, 939, 357;
570933, 171428, 72194, 39274, 24050, 13429, 4820;
...
Main diagonal gives
A008608(n-1) for n>1.
-
g:= u-> `if`(u=0, 0, x^u):
b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0,
(p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add(
(p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l)))
, j=0..n))))(nops(l))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(1,n-1,[0$(n-1)])[2]):
seq(T(n), n=1..10);
-
g[u_] := If[u == 0, 0, x^u];
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0, # + {0, #[[1]] g[n]} & [b[l[[1]]+1, m-1, ReplacePart[l, 1 -> Nothing]]], Sum[# + {0, #[[1]] g[j]} & [b[n-j, i-1, ReplacePart[l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]];
T[n_] := Table[Coefficient[#, x, i], {i, 1, n}] & [b[1, n-1, Table[0, {n-1}]][[2]]];
Array[T, 10] // Flatten (* Jean-François Alcover, Oct 28 2020, after Maple *)
A259844
Number A(n,k) of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with k = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 22, 40, 1, 1, 1, 5, 50, 351, 357, 1, 1, 1, 6, 95, 1686, 11275, 4820, 1, 1, 1, 7, 161, 5796, 138740, 689146, 96030, 1, 1, 1, 8, 252, 16072, 1010385, 25876312, 76718466, 2766572, 1
Offset: 0
A(2,2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 22, 50, 95, 161, ...
1, 40, 351, 1686, 5796, 16072, ...
1, 357, 11275, 138740, 1010385, 5244723, ...
-
b:= proc(n, i, l, k) option remember; (m-> `if`(m=0, 1,
`if`(i=0, b(l[1]+k, m-1, subsop(1=NULL, l), k), add(
b(n-j, i-1, subsop(i=l[i]+j, l), k), j=0..n))))(nops(l))
end:
A:= (n, k)-> b(k, n-1, [0$(n-1)], k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, i_, l_List, k_] := b[n, i, l, k] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + k, m-1, ReplacePart[l, 1 -> Sequence[]], k], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]]+j], k], {j, 0, n}]]]][Length[l]]; A[n_, k_] := b[k, n-1, Array[0&, n-1], k]; A[0, ] = A[, 0] = 1; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A259786
Number T(n,k) of n X n Tesler matrices of nonnegative integers with element sum n+k; triangle T(n,k), n>=1, 0<=k<=n*(n-1)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 1, 6, 11, 11, 7, 3, 1, 1, 10, 35, 65, 81, 71, 50, 27, 12, 4, 1, 1, 15, 85, 260, 526, 771, 878, 811, 627, 416, 238, 118, 50, 18, 5, 1, 1, 21, 175, 805, 2436, 5362, 9123, 12568, 14465, 14289, 12345, 9483, 6534, 4071, 2297, 1176, 542, 224, 81, 25, 6, 1
Offset: 1
Triangle T(n,k) begins:
1;
1, 1;
1, 3, 2, 1;
1, 6, 11, 11, 7, 3, 1;
1, 10, 35, 65, 81, 71, 50, 27, 12, 4, 1;
1, 15, 85, 260, 526, 771, 878, 811, 627, 416, 238, 118, 50, 18, 5, 1;
...
-
b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1, expand(
`if`(i=0, x^(l[1]+1)*b(l[1]+1, m-1, subsop(1=NULL, l)), add(
b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n)))))(nops(l))
end:
T:= n->(p->seq(coeff(p, x, i), i=n-1..degree(p)))(b(1, n-1, [0$(n-1)])):
seq(T(n), n=1..8);
-
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, 1, Expand[
If[i == 0, x^(l[[1]] + 1)*b[l[[1]] + 1, m - 1,
ReplacePart[l, 1 -> Nothing]], Sum[b[n - j, i - 1,
ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]]][Length[l]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, n - 1,
Exponent[p, x]}]][b[1, n - 1, Table[0, {n - 1}]]];
Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
A259787
Total element sum of all n X n Tesler matrices of nonnegative integers.
Original entry on oeis.org
1, 5, 31, 270, 3370, 60146, 1522031, 54055976, 2666453502, 180847717069, 16704822358932, 2082808024263350, 347639192485104658, 77076883307827211845, 22537752778732740525833, 8633258320969387044105210, 4305220991520242104331411368, 2778601200692503839128415662124
Offset: 1
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], the total sum of all elements gives a(2) = 5.
-
b:= proc(n, i, l) option remember; (m-> `if`(m=0, [1, 0], `if`(i=0,
(p-> p+[0, p[1]*(l[1]+1)])(b(l[1]+1, m-1, subsop(1=NULL, l))),
add(b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
end:
a:= n-> (p-> p[1]+p[2])(b(1, n-1, [0$(n-1)])):
seq(a(n), n=1..14);
-
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, 0}, If[i == 0, Function[p, p + {0, p[[1]]*(l[[1]] + 1)}][b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]][Length[l]];
a[n_] := Function[p, p[[1]] + p[[2]]][b[1, n - 1, Table[0, {n - 1}]]];
Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)
A259485
Number of n X n connected Tesler matrices.
Original entry on oeis.org
1, 1, 4, 27, 275, 4066, 85888, 2567269, 107630237, 6269269823, 502429080919, 54869692738326, 8091237358339821, 1597342350434681954, 418809228874760212806, 144760685900877097431589, 65510311668753649557469187, 38566383210089506976493649269, 29359678772700284486457832056879
Offset: 1
For n = 3 the a(3) = 4 matrices are [[0,1,0],[0,1,1],[0,0,2]], [[0,1,0],[0,0,2],[0,0,3]], [[0,0,1],[0,1,0],[0,0,2]], [[0,0,1],[0,0,1],[0,0,3]].
- D. Armstrong, A. Garsia, J. Haglund, B. Rhoades and B. Sagan, Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. of Combin., 3(3):451-494, 2012.
- D. Armstrong, Tesler Matrices, slides, Saganfest, March 2014.
-
multcoeff:=proc(n, f, coeffv, k)
local i, currcoeff;
currcoeff:=f;
for i from 1 to n do
currcoeff:=`if`(coeffv[i]=0, coeff(series(currcoeff, x[i], k), x[i], 0), coeff(series(currcoeff, x[i], k), x[i]^coeffv[i]));
end do;
return currcoeff;
end proc:
F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1), j=i+1..n), i=1..n):
b := n -> multcoeff(n+1, F(n+1), [seq(1, i=1..n), -n], n+2):
a := n -> `if`(n=1,1,b(n)-add(b(n-i)*a(i),i=1..n-1)):
seq(a(i), i=2..6)
-
b[n_, i_, l_] := b[n, i, l] = With[{m = Length[l]}, If[m == 0, 1, If[i == 0, b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Sequence[]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]];
c[n_] := b[1, n - 1, Array[0&, n - 1]];
a[n_] := a[n] = c[n] - Sum[c[n - i] a[i], {i, 1, n - 1}];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 19}] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz in A008608 *)
A259666
Number of n X n prime Tesler matrices.
Original entry on oeis.org
1, 1, 3, 18, 181, 2788, 62590, 1989540, 87979661, 5349559222, 443306080232, 49679250634068, 7473835936432840, 1498682325685621140, 397803907069442925517, 138847938093177059278212, 63325340852730727078521540, 37513306417359729218973719474, 28701720575221087513434901774347
Offset: 1
Example: For n =3 the a(3) = 3 matrices are [[0,1,0],[0,1,1],[0,0,2]], [[0,1,0],[0,0,2],[0,0,3]], [[0,0,1],[0,0,1],[0,0,3]].
E.g.f.: 1 + x+(1/2)*x^2+(3/6)*x^3+(18/24)*x^4+(181/120)*x^5+(2788/720)*x^6 + ...
-
multcoeff:=proc(n, f, coeffv, k)
local i, currcoeff;
currcoeff:=f;
for i from 1 to n do
currcoeff:=`if`(coeffv[i]=0, coeff(series(currcoeff, x[i], k), x[i], 0), coeff(series(currcoeff, x[i], k), x[i]^coeffv[i]));
end do;
return currcoeff;
end proc:
F:=n->mul(mul((1-x[i]*x[j]^(-1))^(-1), j=i+1..n), i=1..n):
b := n -> multcoeff(n+1, F(n+1), [seq(1, i=1..n), -n], n+2):
sa := 1 + log(1+ add(b(n)*x^n/n!,n=1..7)):
a := n -> n!*coeff(series(sa,x,n+1),x,n):
seq(a(i),i=1..6);
-
b[n_, i_, l_] := b[n, i, l] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Sequence[]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]][Length[l]];
c[n_] := b[1, n-1, Array[0&, n-1]];
a[n_] := a[n] = SeriesCoefficient[1 + Log[1 + Sum[c[k] x^k/k!, {k, 1, n}]], {x, 0, n}] n!;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 19}] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A008608 *)
A248330
The product of the first n Catalan numbers and the number of standard Young tableaux of shape(1,2,...,n).
Original entry on oeis.org
1, 1, 4, 160, 107520, 1722040320, 854352419880960, 16185399027773630054400, 13931397052191274338996977664000, 632089112919018408339999461491467091968000, 1721041721929360607907210006858724622834371563356160000
Offset: 0
A257661
Number of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with (Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h}) in {-1,+1} for all h in {1,...,n}.
Original entry on oeis.org
1, 1, 3, 13, 91, 957, 14883, 335685, 10809115, 489983429, 30878036187, 2674610665285, 315157973368499, 50044685318592821, 10616892819871806779, 2985356872553448786917, 1104511676749585428665683, 534037023412133157982099237, 335321015907953576212969151451
Offset: 0
a(2) = 3: [1,0; 0,1], [0,1; 0,0], [0,1; 0,2].
-
b:= proc(n, i, l) option remember; (m-> `if`(m=0, 1,
`if`(i=0, b(l[1]+1, m-1, subsop(1=NULL, l))+
`if`(l[1]=0, 0, b(l[1]-1, m-1, subsop(1=NULL, l))),
add(b(n-j, i-1, subsop(i=l[i]+j, l)), j=0..n))))(nops(l))
end:
a:= n-> b(1, n-1, [0$(n-1)]):
seq(a(n), n=0..14);
-
b[n_, i_, l_] := b[n, i, l] = With[{m = Length[l]}, If[m == 0, 1, If[i == 0, b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]] + If[l[[1]] == 0, 0, b[l[[1]] - 1, m - 1, ReplacePart[l, 1 -> Nothing]]], Sum[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]], {j, 0, n}]]]];
a[n_] := b[1, n - 1, Table[0, {n - 1}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)
A259842
Number of nonzero elements in all n X n Tesler matrices of nonnegative integers.
Original entry on oeis.org
1, 4, 22, 178, 2114, 36398, 896128, 31136246, 1508259823, 100727634758, 9179951931947, 1131033520118692, 186769092227016256, 41008206412935719870, 11884278052476825052541, 4514826724675651497522250, 2234142899928806917974566378, 1431533853656098851281985968328
Offset: 1
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing four nonzero elements, thus a(2) = 4.
-
g:= u-> `if`(u=0, 0, 1):
b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0,
(p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add(
(p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l)))
, j=0..n))))(nops(l))
end:
a:= n-> b(1, n-1, [0$(n-1)])[2]:
seq(a(n), n=1..14);
-
g[u_] := If[u == 0, 0, 1];
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0,
# + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 ->
Nothing]]], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[
l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]];
a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* Jean-François Alcover, May 15 2022, after Alois P. Heinz *)
A259843
Number of 1 elements in all n X n Tesler matrices of nonnegative integers.
Original entry on oeis.org
1, 3, 15, 117, 1367, 23329, 570933, 19740068, 951916938, 63295826369, 5743788894259, 704672958229270, 115877288304781885, 25338423080304873558, 7313716095786704678585, 2767636572798780219442327, 1364367542961142350256304582, 871016593387715393187604249892
Offset: 1
There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing three 1's, thus a(2) = 3.
-
g:= u-> `if`(u=1, 1, 0):
b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0,
(p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add(
(p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l)))
, j=0..n))))(nops(l))
end:
a:= n-> b(1, n-1, [0$(n-1)])[2]:
seq(a(n), n=1..14);
-
g[u_] := If[u == 1, 1, 0];
b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0, # + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]] ], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]];
a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* Jean-François Alcover, May 15 2022, after Alois P. Heinz *)
Showing 1-10 of 11 results.
Next
Comments