cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259877 If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).

Original entry on oeis.org

1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
Offset: 2

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Crossrefs

A001147 alternating with A000457. Interlaced diagonal of A008299.

Programs

  • Maple
    f:=proc(n) if n mod 2 = 0 then
    n!/(2^(n/2)*(n/2)!) else
    n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
    [seq(f(n),n=2..30)];
  • Mathematica
    Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
  • PARI
    main(size)={v=vector(size);for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v);} /* Anders Hellström, Jul 10 2015 */
    
  • Python
    from _future_ import division
    A259877_list, a = [1], 1
    for n in range(2,10**2):
        a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
        A259877_list.append(a) # Chai Wah Wu, Jul 15 2015

Formula

a(n) = (n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!). - Wesley Ivan Hurt, Jul 10 2015
a(n+1) = a(n)*n*(n+1)/6 if n is even, a(n+1) = 6*a(n)/(n-1) if n is odd. - Chai Wah Wu, Jul 15 2015
a(2*n) = A001147(n), a(2*n+1) = A000457(n-1). - Yuchun Ji, Nov 02 2020