A259896 Expansion of psi(x) * psi(x^6) in powers of x where psi() is a Ramanujan theta function.
1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + x^12 + x^15 + x^16 + ... G.f. = q^7 + q^15 + q^31 + 2*q^55 + q^63 + q^79 + q^87 + q^103 + q^127 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A259895.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^3] / (4 q^(7/8)), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(-7/8) * eta(q^2)^2 * eta(q^12)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, ...].
a(3*n + 1) = A259895(n). a(3*n + 2) = a(9*n + 4) = 0.
Comments