cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259896 Expansion of psi(x) * psi(x^6) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 6*y^2 = 8*n + 7. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + x^12 + x^15 + x^16 + ...
G.f. = q^7 + q^15 + q^31 + 2*q^55 + q^63 + q^79 + q^87 + q^103 + q^127 + ...
		

Crossrefs

Cf. A259895.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^3] / (4 q^(7/8)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-7/8) * eta(q^2)^2 * eta(q^12)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, ...].
a(3*n + 1) = A259895(n). a(3*n + 2) = a(9*n + 4) = 0.