A259910 Expansion of f(-x^2, -x^3)^3 / f(-x)^2 in powers of x where f(,) is the Ramanujan general theta function.
1, 2, 2, 1, 2, 3, 4, 3, 3, 4, 6, 6, 7, 8, 8, 9, 11, 12, 13, 14, 17, 19, 21, 21, 25, 27, 30, 31, 35, 39, 43, 47, 51, 55, 60, 65, 71, 77, 83, 88, 98, 105, 115, 122, 132, 142, 155, 164, 178, 191, 206, 220, 236, 252, 272, 290, 311, 332, 356, 378, 407, 434, 464
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 3*x^7 + 3*x^8 + ... G.f. = 1/q + 2*q^119 + 2*q^239 + q^359 + 2*q^479 + 3*q^599 + 4*q^719 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 6th equation.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -2, 1, 1, -2, 1}[[ Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; nmax = 100; CoefficientList[Series[Product[(1-x^k)/((1 - x^(5*k-1))*(1 - x^(5*k-4)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 17 2016 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -2, 1, 1, -2][k%5+1]), n))};
Formula
Expansion of f(-x) * (f(-x^5) / f(-x, -x^4))^3 in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(-x^2, -x^3) * G(x)^2 in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 5 sequence [ 2, -1, -1, 2, -1, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^(k*(5*k + 1)/2)) / (Product_{k in Z} 1 - x^abs(5*k + 1))^2.
a(n) ~ sqrt(5+2*sqrt(5)) * exp(sqrt(2*n/15)*Pi)/ (5*sqrt(2*n)). - Vaclav Kotesovec, Dec 17 2016
Comments