cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056848 Numbers k that divide the number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 10, 16, 65, 160, 180, 366, 406, 896, 1436, 3904, 5464, 6312, 7168, 12558, 17957, 36960, 48097, 48256, 61952, 88646, 94400, 107340, 112240, 114863, 127540, 171856, 270336, 383360, 392736, 459012, 623639, 960484, 1222656, 1312768, 1463990, 1480704, 2244736, 2380968, 3183563, 4161888, 4787280, 5107455, 5606400, 6826556, 7878400, 9188414, 9533238, 10219520, 10356472, 12981760, 15162808, 22062080, 25240360, 28313472, 32215040, 41284864, 72160576, 79563520, 91164167
Offset: 1

Views

Author

Robert G. Wilson v, Sep 02 2000

Keywords

Comments

No other terms below 10^8. - Max Alekseyev, Jul 10 2015

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ PartitionsQ[n], n] == 0, Print[n]], {n, 1, 48000}]

Extensions

Extended by Max Alekseyev, Jul 04 2009
a(49)-a(60) from Max Alekseyev, Jul 10 2015

A162468 Integers n such that A000009(n) (the number of partitions of n into distinct parts) == 1 (mod n).

Original entry on oeis.org

1, 2, 11, 22, 92, 149, 6919, 25517, 45339, 146635, 167903, 7461583, 14809123, 75788157, 80012043
Offset: 1

Views

Author

Max Alekseyev, Jul 04 2009

Keywords

Comments

Integers n dividing A000009(n)-1.
No other terms below 10^8.

Crossrefs

Extensions

a(1)=1 prepended by Max Alekseyev, Dec 28 2011
a(13)-a(15) from Max Alekseyev, Jul 10 2015

A056872 Numbers k such that k | p(k) + q(k) where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).

Original entry on oeis.org

1, 5, 25, 42, 133, 618, 643, 701, 1962, 8150, 147458, 168459, 356038, 415870, 536685, 637757, 1093612, 1207618, 3368325, 3470706, 23400631, 37621653
Offset: 1

Views

Author

Robert G. Wilson v, Sep 02 2000

Keywords

Comments

No other terms below 10^8. - Max Alekseyev, Oct 12 2023

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ PartitionsP[ n ] + PartitionsQ[ n ], n ] == 0, Print[ n ] ], {n, 1, 8150} ]

Extensions

a(11)-a(18) from Sean A. Irvine, May 12 2022
a(19)-a(22) from Max Alekseyev, Oct 12 2023

A056873 Numbers k such that k | p(k) - q(k) where p(k) = partition numbers (A000041) and q(k) = partition numbers into distinct parts (A000009).

Original entry on oeis.org

1, 8, 11, 34, 310, 1688, 2307, 2708, 13988, 21315, 46739, 426378, 771476, 11762557, 18628390, 19841526, 24396168, 85110245
Offset: 1

Views

Author

Robert G. Wilson v, Sep 02 2000

Keywords

Comments

No other terms below 10^8. - Max Alekseyev, Oct 12 2023

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ PartitionsP[n] - PartitionsQ[n], n] == 0, Print[n]], {n, 1, 14577}]

Extensions

a(10)-a(13) from Sean A. Irvine, May 12 2022
a(14)-a(18) from Max Alekseyev, Oct 12 2023
Showing 1-4 of 4 results.