cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259966 Total binary weight (cf. A000120) of all A005251(n) binary sequences of length n not containing any isolated 1's.

Original entry on oeis.org

0, 0, 2, 7, 16, 34, 72, 149, 300, 593, 1158, 2239, 4292, 8168, 15450, 29072, 54456, 101597, 188878, 350038, 646880, 1192415, 2192956, 4024583, 7371884, 13479421, 24607048, 44853552, 81645236, 148424000, 269497614, 488784787, 885571340, 1602879242, 2898512344
Offset: 0

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Examples

			The only two 2-bitstrings without isolated 1's are 00 and 11.  The bitsums of these are 0 and 2.  Adding these give a(2)=2.
The only four 3-bitstrings without isolated 1's are 000, 011, 110 and 111.  The bitsums of these are 0, 2, 2 and 3.  Adding these give a(3)=7.
		

References

  • R. K. Guy, Letter to N. J. A. Sloane, Feb 05 1986.

Crossrefs

Programs

  • Haskell
    a259966 n = a259966_list !! n
    a259966_list = 0 : 0 : 2 : 7 : zipWith (+)
       (zipWith3 (((+) .) . (+))
                 a259966_list (drop 2 a259966_list) (drop 3 a259966_list))
       (drop 2 $ zipWith (+)
                 (map (* 2) $ drop 2 a005251_list) (map (* 3) a005251_list))
    -- Reinhard Zumkeller, Jul 13 2015
    
  • PARI
    concat([0,0], Vec(-x^2*(x-2)/(x^3-x^2+2*x-1)^2 + O(x^50))) \\ Colin Barker, Jul 21 2015

Formula

a(n) = a(n-1)+a(n-2)+2*b(n)+a(n-4)+3*b(n-2), where b() is A005251().
G.f.: -x^2*(x-2) / (x^3-x^2+2*x-1)^2. - Colin Barker, Jul 21 2015
a(n) = Sum_{k=1..n} k * A097230(n,k). - Alois P. Heinz, Mar 03 2020

Extensions

Edited by Reinhard Zumkeller, Jul 13 2015