A259966 Total binary weight (cf. A000120) of all A005251(n) binary sequences of length n not containing any isolated 1's.
0, 0, 2, 7, 16, 34, 72, 149, 300, 593, 1158, 2239, 4292, 8168, 15450, 29072, 54456, 101597, 188878, 350038, 646880, 1192415, 2192956, 4024583, 7371884, 13479421, 24607048, 44853552, 81645236, 148424000, 269497614, 488784787, 885571340, 1602879242, 2898512344
Offset: 0
Examples
The only two 2-bitstrings without isolated 1's are 00 and 11. The bitsums of these are 0 and 2. Adding these give a(2)=2. The only four 3-bitstrings without isolated 1's are 000, 011, 110 and 111. The bitsums of these are 0, 2, 2 and 3. Adding these give a(3)=7.
References
- R. K. Guy, Letter to N. J. A. Sloane, Feb 05 1986.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-5,2,-1).
Programs
-
Haskell
a259966 n = a259966_list !! n a259966_list = 0 : 0 : 2 : 7 : zipWith (+) (zipWith3 (((+) .) . (+)) a259966_list (drop 2 a259966_list) (drop 3 a259966_list)) (drop 2 $ zipWith (+) (map (* 2) $ drop 2 a005251_list) (map (* 3) a005251_list)) -- Reinhard Zumkeller, Jul 13 2015
-
PARI
concat([0,0], Vec(-x^2*(x-2)/(x^3-x^2+2*x-1)^2 + O(x^50))) \\ Colin Barker, Jul 21 2015
Formula
a(n) = a(n-1)+a(n-2)+2*b(n)+a(n-4)+3*b(n-2), where b() is A005251().
G.f.: -x^2*(x-2) / (x^3-x^2+2*x-1)^2. - Colin Barker, Jul 21 2015
a(n) = Sum_{k=1..n} k * A097230(n,k). - Alois P. Heinz, Mar 03 2020
Extensions
Edited by Reinhard Zumkeller, Jul 13 2015