A260033 Number of configurations of the general monomer-dimer model for a 2 X 2n square lattice.
1, 7, 71, 733, 7573, 78243, 808395, 8352217, 86293865, 891575391, 9211624463, 95173135221, 983314691581, 10159461285307, 104966044432531, 1084493574452273, 11204826469232593, 115766602184825143, 1196083332322900695, 12357755266727364237, 127678491209925526885
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 5.
- Index entries for linear recurrences with constant coefficients, signature (11,-7,1).
Crossrefs
Bisection (even part) of A030186.
Programs
-
GAP
a:=[1,7,71];; for n in [4..30] do a[n]:=11*a[n-1]-7*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x+x^2)/(1-11*x+7*x^2-x^3) )); // G. C. Greubel, Oct 27 2019 -
Maple
seq(coeff(series((1-4*x+x^2)/(1-11*x+7*x^2-x^3), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Oct 27 2019
-
Mathematica
LinearRecurrence[{11,-7,1}, {1,7,71}, 30] (* G. C. Greubel, Oct 27 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-4*x+x^2)/(1-11*x+7*x^2-x^3)) \\ G. C. Greubel, Oct 27 2019
-
Sage
def A260033_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-4*x+x^2)/(1-11*x+7*x^2-x^3)).list() A260033_list(30) # G. C. Greubel, Oct 27 2019
Formula
G.f.: (1-4*x+x^2)/(1-11*x+7*x^2-x^3). - Alois P. Heinz, Mar 07 2016
Extensions
a(0), a(5)-a(20) from Alois P. Heinz, Mar 07 2016