cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260033 Number of configurations of the general monomer-dimer model for a 2 X 2n square lattice.

Original entry on oeis.org

1, 7, 71, 733, 7573, 78243, 808395, 8352217, 86293865, 891575391, 9211624463, 95173135221, 983314691581, 10159461285307, 104966044432531, 1084493574452273, 11204826469232593, 115766602184825143, 1196083332322900695, 12357755266727364237, 127678491209925526885
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2015

Keywords

Crossrefs

Bisection (even part) of A030186.

Programs

  • GAP
    a:=[1,7,71];; for n in [4..30] do a[n]:=11*a[n-1]-7*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x+x^2)/(1-11*x+7*x^2-x^3) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq(coeff(series((1-4*x+x^2)/(1-11*x+7*x^2-x^3), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Oct 27 2019
  • Mathematica
    LinearRecurrence[{11,-7,1}, {1,7,71}, 30] (* G. C. Greubel, Oct 27 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+x^2)/(1-11*x+7*x^2-x^3)) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A260033_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-4*x+x^2)/(1-11*x+7*x^2-x^3)).list()
    A260033_list(30) # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: (1-4*x+x^2)/(1-11*x+7*x^2-x^3). - Alois P. Heinz, Mar 07 2016

Extensions

a(0), a(5)-a(20) from Alois P. Heinz, Mar 07 2016