cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A259933 Amicable pairs (x < y) ordered by nondecreasing sum (x + y) and then by increasing x.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 66928, 66992, 67095, 71145, 63020, 76084, 69615, 87633, 79750, 88730, 100485, 124155, 122368, 123152, 122265, 139815, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084, 308620, 389924
Offset: 1

Views

Author

Omar E. Pol, Jul 09 2015

Keywords

Comments

A pair of numbers x and y is called amicable if the sum of the proper divisors (or aliquot parts) of either one is equal to the other.
By definition a property of the amicable pair (x, y) is that x + y = sigma(x) = sigma(y).
The amicable pairs (x < y) are adjacent to each other in the list.
Also A260086 and A260087 interleaved.
Another version (A259180) lists the amicable pairs (x < y) ordered by increasing x.
Amicable numbers A063990 are the terms of this sequence in increasing order.
First differs from both A063990 and A259180 at a(17).

Examples

			-----------------------------------
       Amicable pair         Sum
          x      y          x + y
-----------------------------------
n     A260086 A260087      A259953
-----------------------------------
1        220     284          504
2       1184    1210         2394
3       2620    2924         5544
4       5020    5564        10584
5       6232    6368        12600
6      10744   10856        21600
7      12285   14595        26880
8      17296   18416        35712
9      66928   66992       133920
10     67095   71145       138240
11     63020   76084       139104
12     69615   87633       157248
...      ...     ...          ...
32    609928  686072      1296000
33    643336  652664      1296000
...
The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The sum 220 + 284 = 504 is the smallest sum of an amicable pair, so a(1) = 220 and a(2) = 284.
Note that some pairs (x, y) share the same sum (x + y), for example: (609928 + 686072) = (643336 + 652664) = sigma(609928) = sigma(686072) = sigma(643336) = sigma(652664) = 1296000, thus in the list first appears the pair (609928, 686072) and then (643336, 652664) because 609928 < 643336.
		

Crossrefs

Formula

a(2n-1) + a(2n) = A000203(a(2n-1)) = A000203(a(2n)) = A259953(n).

A260087 Larger of amicable pair (x, y) as they are listed in A259933.

Original entry on oeis.org

284, 1210, 2924, 5564, 6368, 10856, 14595, 18416, 66992, 71145, 76084, 87633, 88730, 124155, 123152, 139815, 153176, 168730, 176336, 180848, 203432, 202444, 365084, 389924, 430402, 399592, 455344, 486178, 514736, 525915, 669688, 686072, 652664, 691256, 712216, 783556, 796696, 863835, 901424, 980984, 1043096, 1125765
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2015

Keywords

Comments

Another version of A002046.
First differs from A002046 at a(9).

Crossrefs

Formula

a(n) = A259933(2n) = A259953(n) - A259933(2n-1) = A259953(n) - A260086(n).

A275316 Average of amicable pairs (x,y), ordered by the sum x+y given in A259953.

Original entry on oeis.org

252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 66960, 69120, 69552, 78624, 84240, 112320, 122760, 131040, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 648000, 657720, 673920, 725760, 761400, 833280, 890568, 939600
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 22 2016

Keywords

Comments

Each term represents the midpoint of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The length and radius of each interval can be found in A275469 and A275470, respectively.
This sequence is monotonic (specifically, nondecreasing), since x+y (A259953) is nondecreasing. For a nonmonotonic ordering of these averages, see A275315.
It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd). If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.

Examples

			a(  1) = (     220 +      284)/2 =      504/2 =      252.
a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
...      ...                 ...          ...         ...
a(  9) = (   66928 +    66992)/2 =   133920/2 =    66960.
a( 10) = (   67095 +    71145)/2 =   138240/2 =    69120.
a( 11) = (   63020 +    76084)/2 =   139104/2 =    69552.
...      ...                 ...          ...         ...
a( 15) = (  122368 +   123152)/2 =   245520/2 =   122760.
a( 16) = (  122265 +   139815)/2 =   262080/2 =   131040.
a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
...      ...                 ...          ...         ...
a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
a( 33) = (  643336 +   652664)/2 =  1296000/2 =   648000.
...      ...                 ...          ...         ...
a(107) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
a(108) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
...      ...                 ...          ...         ...
a(139) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(140) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
...      ...                 ...          ...         ...
		

Crossrefs

Programs

  • Mathematica
    With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Mean, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]] (* Michael De Vlieger, Oct 22 2017 *)

Formula

a(n) = [A260086(n) + A260087(n)]/2 = A259953(n)/2.

A259953 The sum (in nondecreasing order) of the two numbers in an amicable pair.

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 133920, 138240, 139104, 157248, 168480, 224640, 245520, 262080, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320, 1270080, 1296000, 1296000, 1315440, 1347840, 1451520, 1522800, 1666560, 1781136, 1879200, 2041200
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2015

Keywords

Comments

Also the common value of sigma(x) = sigma(y) of the amicable pairs (x < y) ordered by nondecreasing sum (x + y). See A259933.
Duplicates occur, e.g., a(32) = a(33) = 1296000.
Another version of A180164.
First differs from both A161005 and A180164 at a(9).

Examples

			------------------------------------------
      A m i c a b l e   p a i r      Sum
------------------------------------------
n     A260086(n)  +  A260087(n)  =   a(n)
------------------------------------------
1         220            284          504
2        1184           1210         2394
3        2620           2924         5544
4        5020           5564        10584
5        6232           6368        12600
6       10744          10856        21600
7       12285          14595        26880
8       17296          18416        35712
9       66928          66992       133920
10      67095          71145       138240
11      63020          76084       139104
12      69615          87633       157248
...       ...            ...          ...
32     609928         686072      1296000
33     643336         652664      1296000
...
		

Crossrefs

Formula

a(n) = A259933(2n-1) + A259933(2n) = A260086(n) + A260087(n).

A275469 Difference between the larger and smaller terms of the n-th amicable pair (x,y) given in A259933.

Original entry on oeis.org

64, 26, 304, 544, 136, 112, 2310, 1120, 64, 4050, 13064, 18018, 8980, 23670, 784, 17550, 11512, 26420, 4480, 4576, 18064, 5720, 84544, 81304, 110852, 43184, 17888, 17150, 11680, 3510, 69296, 76144, 9328, 67072, 76592, 115592, 70592, 61110, 21712, 82768
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 28 2016

Keywords

Comments

Each term represents the length of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The midpoint and radius of each interval can be found in A275316 and A275470, respectively.
Each term will be even as long as there does not exist an amicable pair where x and y have opposite parity.
This sequence is a rearrangement of A066539 (which is based on A002025, A002046, and A259180). The first ten indices for which a(n) does not equal A066539(n) are n = 9, 10, 11, 15, 16, 33, 34, 35, 41, 42.

Examples

			a(1) = 284 - 220 = 64, a(2) = 1210 - 1184 = 26, and a(3) = 2924 - 2620 = 304.
		

Crossrefs

Formula

a(n) = A260087(n) - A260086(n).

A275470 Half the difference between the larger and smaller terms of the n-th amicable pair (x,y) given in A259933.

Original entry on oeis.org

32, 13, 152, 272, 68, 56, 1155, 560, 32, 2025, 6532, 9009, 4490, 11835, 392, 8775, 5756, 13210, 2240, 2288, 9032, 2860, 42272, 40652, 55426, 21592, 8944, 8575, 5840, 1755, 34648, 38072, 4664, 33536, 38296, 57796, 35296, 30555, 10856, 41384
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 28 2016

Keywords

Comments

Each term represents the radius of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The midpoint and length of each interval can be found in A275316 and A275469, respectively.
A term will be odd if and only if y-x = 2 mod 4. This occurs when x and y have the same parity but their average has the opposite parity.
This sequence is a rearrangement of A162884 (which is based on A002025, A002046, and A066539). The first ten indices for which a(n) does not equal A162884(n) are n = 9, 10, 11, 15, 16, 33, 34, 35, 41, 42.

Examples

			a(1) = (284-220)/2 = 64/2 = 32, a(2) = (1210-1184)/2 = 26/2 = 13, and a(3) = (2924-2620)/2 = 304/2 = 152.
		

Crossrefs

Formula

a(n) = [A260087(n) - A260086(n)]/2 = A275469(n)/2.

A275472 First differences of A275316.

Original entry on oeis.org

945, 1575, 2520, 1008, 4500, 2640, 4416, 49104, 2160, 432, 9072, 5616, 28080, 10440, 8280, 16380, 8100, 18576, 4464, 15840, 5184, 123228, 26460, 25704, 3024, 68400, 31203, 31293, 15264, 110880, 12960, 0, 9720, 16200, 51840, 35640, 71880, 57288, 49032, 81000
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 29 2016

Keywords

Comments

The terms represent differences between consecutive amicable pair averages given in A275316.
Interestingly, the first two odd abundant numbers begin this sequence: a(1) = 945 = A005231(1) and a(2) = 1575 = A005231(2).
Of the first 141 terms, 4 are odd, 137 are even, 136 are abundant, 2 are deficient [specifically, a(27) = 31203 and a(28) = 31293], 7 numbers occur twice [specifically, a(53) = a(59) = 1728, a(25) = a(136) = 3024, a(21) = a(127) = 5184, a(31) = a(137) = 12960, a(34) = a(41) = 16200, a(74) = a(77) = 20736, and a(66) = a(104) = 156240], 3 numbers occur three times [specifically, a(32) = a(107) = a(139) = 0, a(35) = a(42) = a(52) = 51840, and a(30) = a(86) = a(97) = 110880], and every number is divisible by 3.
a(n) = A275066(n) for 41 of the first 141 indices: n = 1, 2, 3, 4, 5, 6, 7, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39, 43, 44, 48, 49, 50, 57, 58, 59, 64, 65, 95, 120, 121.
a(n) = -A275066(n) for 9 of the first 141 indices: n = 15, 41, 46, 55, 67, 70, 81, 86, 141.

Examples

			a(9) = A275316(10) - A275316(9) = 69120 - 66960 = 2160.
		

Crossrefs

Formula

a(n) = A275316(n+1) - A275316(n).
Showing 1-7 of 7 results.