A260155 Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.
1, 4, 32, 318, 3530, 41944, 522010, 6719018, 88726840, 1195527822, 16373466714, 227280520316, 3190715296368, 45226324937400, 646392346047930, 9305481272839662, 134815491199174476, 1964195875748858812, 28761433275110249932, 423052415434610432816
Offset: 0
Examples
When n=1 the four walks are NS, EW, SN, WE.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- M. Bousquet-Mélou, Plane lattice walks avoiding a quadrant, arXiv:1511.02111 [math.CO], 2015.
Crossrefs
Cf. A060898 for walks starting from (0,0) but in which the final point is not prescribed.
Programs
-
Mathematica
f[x_, n_] := x Pochhammer[x+1, n-1]; a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1])); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 25 2018 *)
Formula
a(n) = 4*16^n/ 3^5 * ( 3^4 *f(1/2,n)* f(1/2,n+1)/ (f(2,n) * f(2,n+1)) + 4 *(24*n^2+60*n +29)* f(1/2,n)* f(7/6,n) /(f(2,n+1) *f(4/3, n+1)) -2 *(12*n^2+30*n+5) * f(1/2,n)*f(5/6,n) /(f(2,n+1)*f(5/3,n+1)) ) where f(m,n) is the ascending factorial m*(m+1)*...*(m+n-1) (proved).