cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260155 Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.

Original entry on oeis.org

1, 4, 32, 318, 3530, 41944, 522010, 6719018, 88726840, 1195527822, 16373466714, 227280520316, 3190715296368, 45226324937400, 646392346047930, 9305481272839662, 134815491199174476, 1964195875748858812, 28761433275110249932, 423052415434610432816
Offset: 0

Views

Author

Keywords

Examples

			When n=1 the four walks are NS, EW, SN, WE.
		

Crossrefs

Cf. A060898 for walks starting from (0,0) but in which the final point is not prescribed.

Programs

  • Mathematica
    f[x_, n_] := x Pochhammer[x+1, n-1];
    a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1]));
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 25 2018 *)

Formula

a(n) = 4*16^n/ 3^5 * ( 3^4 *f(1/2,n)* f(1/2,n+1)/ (f(2,n) * f(2,n+1)) + 4 *(24*n^2+60*n +29)* f(1/2,n)* f(7/6,n) /(f(2,n+1) *f(4/3, n+1)) -2 *(12*n^2+30*n+5) * f(1/2,n)*f(5/6,n) /(f(2,n+1)*f(5/3,n+1)) ) where f(m,n) is the ascending factorial m*(m+1)*...*(m+n-1) (proved).