A260182 Smallest square that is pandigital in base n.
4, 64, 225, 5329, 38025, 314721, 3111696, 61058596, 1026753849, 31529329225, 892067027049, 307197306432025, 803752551280900, 29501156485626049, 1163446635475467225, 830482914641378019961, 2200667320658951859841, 104753558229986901966129, 5272187100814113874556176
Offset: 2
Examples
Using the letters a, b, c, ... to represent digit values 10, 11, 12, ..., the terms begin as follows: . n a(n) in base 10 a(n) in base n == ========================= ====================== 2 4 100_2 3 64 2101_3 4 225 3201_4 5 5329 132304_5 6 38025 452013_6 7 314721 2450361_7 8 3111696 13675420_8 9 61058596 136802574_9 10 1026753849 1026753849_10 11 31529329225 1240a536789_11 12 892067027049 124a7b538609_12 13 307197306432025 10254773ca86b9_13 14 803752551280900 10269b8c57d3a4_14 15 29501156485626049 102597bace836d4_15 16 1163446635475467225 1025648cfea37bd9_16 17 830482914641378019961 101246a89cgfb357ed_17 18 2200667320658951859841 10236b5f8eg4ad9ch7_18 19 104753558229986901966129 10234dhbg7ci8f6a9e5_19 20 5272187100814113874556176 1024e7cdi3hb695fja8g_20
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..28 (n = 2..22 from Jon E. Schoenfield)
- Rosetta Code, First perfect square in base N with N unique digits, lists a(n) for n = 2..39.
Comments