A318725 a(n) is the smallest number k such that k! is pandigital in base n.
2, 8, 5, 11, 17, 14, 15, 23, 23, 24, 36, 30, 35, 46, 50, 43, 50, 40, 59, 62, 54, 69, 75, 70, 65, 79, 83, 68, 97, 99, 86, 89, 93, 97, 118, 94, 106, 126, 128, 116, 145, 127, 134, 151, 143, 124, 141, 124, 141, 170, 194, 169, 190, 183, 181, 180, 195, 195, 210, 163
Offset: 2
Examples
a(2) = 2! = 2_10 = 10_2; a(3) = 8! = 40320_10 = 2001022100_3; a(4) = 5! = 120_10 = 1320_4. a(5) = 11! = 39916800_10 = 4020431420_5; a(6) = 17! = 355687428096000_10 = 3300252314304000000_6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..1348 (terms 2..1000 from Seiichi Manyama)
Crossrefs
Programs
-
PARI
a(n) = {my(k=1); while (#Set(digits(k!, n)) != n, k++); k;} \\ Michel Marcus, Sep 02 2018
-
Python
from itertools import count from sympy.ntheory import digits def A318725(n): c, flag = 1, False for k in count(1): m = k if flag: a, b = divmod(m,n) while not b: m = a a, b = divmod(m,n) c *= m if len(set(digits(c,n)[1:]))==n: return k if not (flag or c%n): flag = True # Chai Wah Wu, Mar 13 2024
Comments