A260196 1, -3, followed by -1's.
1, -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, Journal of Integer Sequences, 3(2000), article 00.2.9
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
PARI
first(m)=vector(m,i,i--;if(i>1,-1,if(i==0,1,if(i==1,-3)))) \\ Anders Hellström, Aug 28 2015
-
PARI
Vec(-(2*x^2-4*x+1)/(x-1) + O(x^100)) \\ Colin Barker, Sep 11 2015
Formula
Inverse Akiyama-Tanigawa transform of A151821(n).
From Colin Barker, Sep 11 2015: (Start)
a(n) = -1 for n>1.
a(n) = a(n-1) for n>2.
G.f.: -(2*x^2-4*x+1) / (x-1).
(End)
Comments