A260217 Number of base-3 n-digit pandigital numbers.
0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
Offset: 1
Examples
a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3). a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
Links
- Svenja Huntemann, Values, Temperatures, and Enumeration of Placement Games, Slides, Alberta-Montana Combinatorics and Algorithms Day, Banff, Canada, 23-25 June 2023. See p. 105/109.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
Magma
[2*3^(n-1) - 2^(n+1) + 2: n in [1..30]]; // Vincenzo Librandi, Jul 20 2015
-
Mathematica
Table[2 3^(n - 1) - 2^(n + 1) + 2, {n, 30}] (* Vincenzo Librandi, Jul 20 2015 *)
Comments