cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260253 Number of symmetry-allowed, linearly-independent terms at n-th order in the expansion of E x (e+a) rovibrational perturbation matrix H(Jx,Jy,Jz).

Original entry on oeis.org

1, 0, 4, 1, 9, 2, 16, 4, 25, 7, 36, 10, 49, 14, 64, 19, 81, 24, 100, 30, 121, 37, 144, 44, 169, 52, 196, 61, 225, 70, 256, 80, 289, 91, 324, 102, 361, 114, 400, 127, 441, 140, 484, 154, 529, 169, 576, 184, 625, 200, 676, 217, 729, 234, 784, 252, 841, 271
Offset: 0

Views

Author

Bradley Klee, Jul 20 2015

Keywords

Comments

a(n) are also coefficients in a Molien Series for G = H x T x D3, where H is Hermitian conjugacy, T is Time-reversal, and D3 is triangular Dihedral. |G| = 24.
Harter et al. give only one second-order term, while Sadovskií et al. give only two (see links).

Crossrefs

Cf. A007980 (bisection), A002264, A260220, A000290 (bisection).

Programs

  • Mathematica
    D[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3*(1 + x^2 + x^4)), {x, #}]/#!/.x -> 0 & /@ Range[0, 30]
    CoefficientList[Series[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3 (1 + x^2 + x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 22 2015 *)
  • PARI
    Vec((1 + 2 * x^2 + x^3 + 2 * x^4 + x^6 + x^7)/((1 - x^2)^3 *(1 + x^2 + x^4)) + O(x^90)) \\ Michel Marcus, Aug 05 2015

Formula

G.f.: (1 + 2 * x^2 + x^3 + 2 * x^4 + x^6 + x^7)/((1 - x^2)^3 *(1 + x^2 + x^4)).
a(n)= 2*a(n-2) -a(n-4) +a(n-6) -2*a(n-8) +a(n-10). - R. J. Mathar, Jul 20 2023