A260253 Number of symmetry-allowed, linearly-independent terms at n-th order in the expansion of E x (e+a) rovibrational perturbation matrix H(Jx,Jy,Jz).
1, 0, 4, 1, 9, 2, 16, 4, 25, 7, 36, 10, 49, 14, 64, 19, 81, 24, 100, 30, 121, 37, 144, 44, 169, 52, 196, 61, 225, 70, 256, 80, 289, 91, 324, 102, 361, 114, 400, 127, 441, 140, 484, 154, 529, 169, 576, 184, 625, 200, 676, 217, 729, 234, 784, 252, 841, 271
Offset: 0
Links
- W. G. Harter, H. W. Galbraith, and C. W. Patterson, Energy level cluster analysis for E(v2) vibration rotation spectrum of spherical top molecules, J. Chem. Phys, 69, 4888 (1978).
- D. A. Sadovskií and B. I. Zhilinskií, Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules, Molecular Physics 65, 1 (1988).
- N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, American Mathematical Monthly (1977): 82-107.
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bulletin of the American Mathematical Society 1.3 (1979): 475-511.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,0,1,0,-2,0,1).
Programs
-
Mathematica
D[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3*(1 + x^2 + x^4)), {x, #}]/#!/.x -> 0 & /@ Range[0, 30] CoefficientList[Series[(1 + 2 x^2 + x^3 + 2 x^4 + x^6 + x^7)/((1 - x^2)^3 (1 + x^2 + x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 22 2015 *)
-
PARI
Vec((1 + 2 * x^2 + x^3 + 2 * x^4 + x^6 + x^7)/((1 - x^2)^3 *(1 + x^2 + x^4)) + O(x^90)) \\ Michel Marcus, Aug 05 2015
Formula
G.f.: (1 + 2 * x^2 + x^3 + 2 * x^4 + x^6 + x^7)/((1 - x^2)^3 *(1 + x^2 + x^4)).
a(n)= 2*a(n-2) -a(n-4) +a(n-6) -2*a(n-8) +a(n-10). - R. J. Mathar, Jul 20 2023
Comments