A260285 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g, in the case that the circle is oriented and the surface is oriented.
1, 3, 1, 9, 11, 2, 37, 113, 68, 0, 182, 1102, 1528, 216, 0, 1143, 11114, 28947, 14336, 0, 0, 7553, 112846, 491767, 554096, 69264, 0, 0, 54559, 1160532, 7798139, 16354210, 7066668, 0, 0, 0, 412306, 12038974, 117668914, 407921820, 397094352, 45043200, 0, 0, 0
Offset: 1
Examples
The transposed triangle starts: 1 3 9 37 182 1143 7553 54559 412306 1 11 113 1102 11114 112846 1160532 12038974 2 68 1528 28947 491767 7798139 117668914 0 216 14336 554096 16354210 407921820 0 0 69264 7066668 397094352 0 0 0 45043200 0 0 0 0 0
Links
- R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
Crossrefs
Programs
-
Magma
/* Example n := 6 */ n:=6; n; // n: number of crossings G:=Sym(2*n); doubleG := Sym(4*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) cardH:=#H; cardH; rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) Hcycrho:=sub
; // The subgroup generated by H and cycrho cardZp:= Factorial(2*n-1); beta:=G!Append([2..2*n],1); // A typical circular permutation Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub ; psifct := function(per); perinv:=per^(-1); res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; res cat:= resbis; return doubleG!res; end function; numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus //case OO dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbeta); #dblsize; genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; quit; // Robert Coquereaux, Nov 23 2015
Comments