A260302 Maximum water retention of a number octagon of order n.
0, 0, 231, 1378, 4753, 12246, 26335, 50086, 87153, 141778, 218791, 323610, 462241, 641278, 867903, 1149886, 1495585, 1913946, 2414503, 3007378, 3703281, 4513510, 5449951, 6525078, 7751953, 9144226, 10716135, 12482506, 14458753, 16660878, 19105471, 21809710
Offset: 1
Examples
(22 23 24) (37 1 2 3 25) (36 4 5 6 7 8 26) (35 9 10 11 12 13 27) (34 14 15 16 17 18 28) (33 19 20 21 29) (32 31 30) The largest values (22 - 37) form the dam with the value 22 being the spillway.
Links
- G. C. Greubel and Craig Knecht, Table of n, a(n) for n = 1..1000 (Terms 1 through 32 were computed by Craig Knecht; terms 33 through 1000 by G. C. Greubel, Nov 13 2015; term 451 = 1002105368551 corrected by _Georg Fischer_, May 24 2019)
- Craig Knecht, Octagon volume calculation.
- Craig Knecht, Volume retention of a number square.
- Wikipedia, Water retention on mathematical surfaces
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A261347 (water retention on a number square).
Programs
-
Magma
[0,0] cat [(1/2)*(7*n^2-18*n+12)*(7*n^2-18*n+13): n in [3..60]]; // Vincenzo Librandi, Nov 20 2015
-
Mathematica
Table[-KroneckerDelta[n,1] - 10*KroneckerDelta[n,2] + (1/2)*((7*n^2-18*n+12)^2+(7*n^2-18*n+12)), {n, 1, 30}] (* G. C. Greubel, Nov 13 2015 *)
-
PARI
concat(vector(2), Vec(-x^3*(10*x^4-49*x^3+173*x^2+223*x+231)/(x-1)^5 + O(x^100))) \\ Colin Barker, Nov 11 2015
Formula
a(n) = (1/2)*(7*n^2 - 18*n + 12) (7*n^2 - 18*n + 13) for n > 2.
From Colin Barker, Nov 11 2015: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
G.f.: -x^3*(10*x^4-49*x^3+173*x^2+223*x+231) / (x-1)^5. (End)
Comments