cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260302 Maximum water retention of a number octagon of order n.

Original entry on oeis.org

0, 0, 231, 1378, 4753, 12246, 26335, 50086, 87153, 141778, 218791, 323610, 462241, 641278, 867903, 1149886, 1495585, 1913946, 2414503, 3007378, 3703281, 4513510, 5449951, 6525078, 7751953, 9144226, 10716135, 12482506, 14458753, 16660878, 19105471, 21809710
Offset: 1

Views

Author

Craig Knecht, Nov 10 2015

Keywords

Comments

A number octagon fills an octagon on a square grid with the smallest unique natural numbers.
The sum of the interior values for a number hexagon on a circular lattice is A079903. There are nice illustrations for this by Mathar at A257594.

Examples

			      (22 23 24)
   (37  1  2  3 25)
(36  4  5  6  7  8  26)
(35  9 10 11 12 13  27)
(34 14 15 16 17 18  28)
   (33 19 20 21 29)
      (32 31 30)
The largest values (22 - 37) form the dam with the value 22 being the spillway.
		

Crossrefs

Cf. A261347 (water retention on a number square).

Programs

  • Magma
    [0,0] cat [(1/2)*(7*n^2-18*n+12)*(7*n^2-18*n+13): n in [3..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    Table[-KroneckerDelta[n,1]  - 10*KroneckerDelta[n,2] + (1/2)*((7*n^2-18*n+12)^2+(7*n^2-18*n+12)), {n, 1, 30}] (* G. C. Greubel, Nov 13 2015 *)
  • PARI
    concat(vector(2), Vec(-x^3*(10*x^4-49*x^3+173*x^2+223*x+231)/(x-1)^5 + O(x^100))) \\ Colin Barker, Nov 11 2015
    

Formula

a(n) = (1/2)*(7*n^2 - 18*n + 12) (7*n^2 - 18*n + 13) for n > 2.
From Colin Barker, Nov 11 2015: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
G.f.: -x^3*(10*x^4-49*x^3+173*x^2+223*x+231) / (x-1)^5. (End)