A139244 a(0) = 4; a(n) = a(n-1)^2 - 1.
4, 15, 224, 50175, 2517530624, 6337960442777829375, 40169742574216538983356186036612890624, 1613608218478824775913354216413699241125577233045500390244103887844987109375
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Programs
-
Maple
A[0]:= 4: for n from 1 to 10 do A[n]:= A[n-1]^2-1 od: seq(A[i],i=0..10); # Robert Israel, Jul 20 2015
-
Mathematica
a=4; lst={a}; Do[b=a^2-1; AppendTo[lst,b]; a=b, {n,10}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 28 2010 *)
-
PARI
a(n)=if(n,a(n-1)^2-1,4) \\ Charles R Greathouse IV, Jul 23 2015
Formula
a(n-1) = ceiling(c^(2^n)) where c is a constant between 1 and 2.
More specifically, c=1.9668917617901763653335057202... (sequence A260315). - Chayim Lowen, Jul 17 2015
Comments