cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260327 Triangle read by rows: T(n,k) (0 <= k <= n) gives numerators of coefficients in Nörlund's polynomials D_{2n}(x).

Original entry on oeis.org

1, 0, -1, 0, 2, 5, 0, -16, -42, -35, 0, 144, 404, 420, 175, 0, -768, -2288, -2684, -1540, -385, 0, 1061376, 3327584, 4252248, 2862860, 1051050, 175175, 0, -552960, -1810176, -2471456, -1849848, -820820, -210210, -25025, 0, 200005632, 679395072, 978649472, 792548432, 397517120, 125925800, 23823800, 2127125
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2015

Keywords

Examples

			Triangle begins:
1,
0,-1,
0,2,5,
0,-16,-42,-35,
0,144,404,420,175,
0,-768,-2288,-2684,-1540,-385,
0,1061376,3327584,4252248,2862860,1051050,175175,
...
The first few polynomials are (as listed in Nörlund, page 460):
[ 0] 1;
[ 2] -n/3;
[ 4]  n*(5*n + 2)/15;
[ 6] -n*(35*n^2  + 42*n     + 16)/63;
[ 8]  n*(175*n^3 + 420*n^2  + 404*n    + 144)/135;
[10] -n*(385*n^4 + 1540*n^3 + 2684*n^2 + 2288*n + 768)/99;
		

Crossrefs

For denominators see A260326.

Programs

  • Maple
    NorlundD := proc(n) if irem(n, 2) = 1 then return unapply(0, x) fi;
    series((z/sin(z))^x, z, n+1): return unapply((-1)^iquo(n,2)*n!*coeff(%, z, n), x) end: A260327_row := n -> seq(coeff(numer(NorlundD(2*n)(x)),x,k), k=0..n):
    for n from 0 to 6 do A260327_row(n) od; # Peter Luschny, Jul 01 2019
  • Mathematica
    NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify;
    Table[NorlundD[nu, n] // Together // Numerator // CoefficientList[#, n]&, {nu, 0, 12, 2}] (* Jean-François Alcover, Jul 01 2019 *)
  • PARI
    { A260327_row(n) = my(t,Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); Vecrev(t*denominator(content(t))); } \\ Max Alekseyev, Jul 04 2019

Formula

E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019

Extensions

Typo in data and example corrected by Jean-François Alcover, Jul 01 2019
More terms by Peter Luschny, Jul 01 2019

A290761 Irregular triangle, read by rows, of coefficients of polynomials that are the "nonstandard" factor of polynomials yielding the columns (up to sign) of triangle A290053, beginning with column 3.

Original entry on oeis.org

3, 5, -6, 16, 1, 7, 16, 28, 0, 15, 225, 1265, 3707, 7120, 4900, -6480, 27648, 3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0, 63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400, 9, 531, 14010, 219106
Offset: 1

Views

Author

Gregory Gerard Wojnar, Aug 09 2017

Keywords

Comments

The polynomials come in pairs: first of odd degree; second of even degree 1 greater, whose constant term is always zero. Observations: All coefficients are positive except for the linear coefficients of the first polynomial in each pair, which are always negative. From the first of one pair to the first of the next pair, the degree always grows by 4. The "standard" factors of polynomials yielding the columns of triangle A290053 (beginning with column 3) are always of the form (1/A053657(k+2))*(N + k + 2) in odd rows of this triangle A290761, and of the form (N/A053657(k+2))*(N + k + 3)^2 in even rows of this triangle, where k is the row number. See examples.

Examples

			The first rows of the triangle are parsed as follows:
3, 5, -6, 16;
1, 7, 16, 28, 0;
15, 225, 1265, 3707, 7120, 4900, -6480, 27648;
3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0;
63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400;
9, 531, 14010, 219106, 2266137, 16325259, 83797380, 307998768, 802828704, 1433652560, 1651979520, 1239918336, 0.
The associated full polynomials giving the columns of triangle A290053 are then:
(1/24) * (N + 3) * (3*N^3 + 5*N^2 - 6*N + 16);
(N/48) * (N + 5)^2 * (1*N^3 + 7*N^2 + 16*N + 28);
(1/5760) * (N + 5) * (15*N^7 + 225*N^6 + 1265*N^5 + 3707*N^4 + 7120*N^3 + 4900*N^2 - 6480*N + 27648);
(N/11520) * (N + 7)^2 * (3*N^7 + 83*N^6 + 961*N^5 + 6201*N^4 + 24708*N^3 + 60700*N^2 + 87968*N + 85056); etc.
		

Crossrefs

The first column of this triangle is A290030; alternating entries of the first column give A260326. See also triangle A290053, whose columns are A000012-A000096, A290061-A290071, A290127-A290723, etc.
Showing 1-2 of 2 results.