cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260332 Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 231 in the classical sense.

Original entry on oeis.org

1, 2, 18, 226, 3298, 52450, 881970
Offset: 0

Views

Author

Manda Riehl, Jul 29 2015

Keywords

Comments

According to Yang-Jiang (2021) these are the 5-Schroeder numbers. If confirmed, this will prove Michael Weiner's conjectures and enable us to extend the sequence. Yang & Jiang (2021) give an explicit formula for the m-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
By diamond-shaped poset with 4 vertices, we mean a poset on four elements with e_1 < e_2, e_1 < e_3, e_2 < e_4, e_3 < e_4, and no order relations between e_2 and e_3. In the Hasse diagram for such a poset, we have a least element, two elements in the level above, and one element in the top level, so the diagram resembles a diamond. The associated permutation is the permutation obtained by reading the labels of each poset by levels left to right, starting with the least element.
Also the number of labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 312 in the classical sense via reverse complement Wilf equivalence.
Conjecture: Also the number of lattice paths (Schroeder paths) from (0,0) to (n,4n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 4x. - Michael D. Weiner, Jul 24 2019

Examples

			For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
		

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021

Formula

There is a complicated recursive formula available in Paukner et al.
Yang & Jiang (2021) give an explicit formula for the 5-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
Conjecture: a(n) = Sum_{k=1..n} binomial(n,k)*binomial(4*n,k-1)*2^k/n for n > 0. - Michael D. Weiner, Jul 23 2019
From Peter Bala, Jun 16 2023: (Start)
Conjectures: 1) the g.f. A(x) = 1 + 2*x + 18*x^2 + 226*x^3 + ... satisfies A(x)^4 = (1/x) * the series reversion of ((1 - x)/(1 + x))^4.
2) Define b(n) = (1/4) * [x^n] ((1 + x)/(1 - x))^(4*n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ).
3) a(n) = 2 * hypergeom([1 - n, -4*n], [2], 2) for n >= 1 (equivalent to Weiner's conjecture above).
4) [x^n] A(x)^n = (2*n) * hypergeom([1 - n, 1 - 5*n], [2], 2) for n >= 1. (End)