cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067760 a(n) is the least positive k such that (2n+1) + 2^k is prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, 5, 2, 1, 3, 2, 1, 1, 8, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 7, 2, 1, 3, 4, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 7, 4, 5, 3, 4, 2, 1, 2, 1, 3, 2, 1, 1, 10, 3, 3, 2, 1, 1, 4, 2, 1, 4, 2, 1, 2, 1, 5, 2, 1, 3, 2, 1, 1, 4, 3, 3, 2, 1, 1, 2, 1, 1, 6, 5, 3, 6
Offset: 0

Views

Author

Don Reble, Feb 05 2002

Keywords

Comments

From Phil Moore (moorep(AT)lanecc.edu), Dec 14 2009: (Start)
It is known that a(39278) = 0, since no such prime exists for the Sierpiński number 78557 (cf. A076336).
It has recently been discovered that 2131+2^4583176 and 41693+2^5146295 are probable primes, so a(1065) is probably 4583176 and a(20846) is probably 5146295.
At present, the only odd value less than 78557 for which no prime or strong probable prime of the form t+2^k is known is t = 40291, so a(20145) is completely unknown. In addition, for 25 values of t < 78557, only strong probable primes are known. (End)
The last case was resolved in 2011 when the probable prime 40291+2^9092392 was found as a part of a distributed project "Five or Bust". See links. - Jeppe Stig Nielsen, Mar 29 2019

Examples

			a(15)=4 because (2*15+1)+2^k is composite for k=1,2,3 and prime for k=4.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k=1); while (! isprime((2*n+1)+2^k), k++); k;} \\ Michel Marcus, Feb 26 2018

A361999 a(n) is the smallest k such that A361902(k) = n, or -1 if no such k exists.

Original entry on oeis.org

2, 1, -1, 0, 8, 24, 33, 90, 116, 25, 402, 140, 85, 120, 692, 91, 472, 1240, 369, 762, 694, 551, 3290, 322, 121, 2758, 1164, 321, 778, 3144, 663, 3418, 4684, 721, 8590, 3222, 511, 7424, 5202, 391, 3364, 10392, 531, 9710, 1714, 891, 27116, 11008, 703, 19132, 8898
Offset: 0

Views

Author

Pontus von Brömssen, Apr 02 2023

Keywords

Crossrefs

A260349 a(n) = min(k : A046067((k+1)/2) = n).

Original entry on oeis.org

1, 3, 7, 17, 55, 59, 19, 167, 31, 311, 289, 227, 351, 203, 379, 197, 103, 1253, 829, 335, 211, 353, 649, 437, 1921, 1853, 2869, 917, 361, 263, 283, 1637, 1213, 3353, 1519, 797, 241, 1691, 259, 1391, 2503, 1109, 3859, 1857
Offset: 0

Views

Author

Hugo van der Sanden, Jul 23 2015

Keywords

Comments

a(n) is the first odd number k for which k * 2^i + 1 is prime when i = n but composite for all i: 0 <= i < n, or 0 if no such k exists. Thus it is the first k for which A046067((k+1)/2) = n, and therefore also the first k for which you need to test the primality of exactly n values to show that it is not a Sierpiński number.
Jaeschke shows that for each n>0, the set {k : A046067((k+1)/2) = n} is infinite. - Jeppe Stig Nielsen, Jul 06 2020

Examples

			7 * 2^i + 1 is composite for i < 2 (with values 8, 15) but prime for i = 2 (29); the smaller odd numbers 1, 3 and 5 each yield a prime for smaller i, so a(2) = 7.
		

Crossrefs

Programs

  • PARI
    a(n)=forstep(k=1,+oo,2,for(i=0,n-1,ispseudoprime(k<Jeppe Stig Nielsen, Jul 06 2020
Showing 1-3 of 3 results.