A260387 Numbers n = d_0d_1...d_n (n < 10) such that d_i is the number of digits equal to i in n (base b), where b is less than 10.
12, 13, 320, 3201, 72200, 89000, 132110, 345000, 643000, 2320200, 3121300, 10103111, 11300130, 42430000, 51340000, 64030000, 72300000, 86300000, 125102000, 130213000, 211220001, 220101111, 323111000, 431130000, 614110000, 667000000, 2153100000, 2521002000, 3021211100
Offset: 1
Examples
12 = 110_3, which has 1 zero and 2 ones. 13 = 1101_2, which has 1 zero and 3 ones. 320 = 11000_4, which has 3 zeros, 2 ones and 0 twos. 3201 = 100301_5, which has 3 zeros, 2 ones, 0 twos and 1 three. 72200 = 10200001002_3 89000 = 10101101110101000_2 132110 = 13211420_5 345000 = 122112020210_3 643000 1012200000211_3 42430000 = 2201312320300_4 51340000 = 3003312023200_4 64030000 = 3310100110300_4 72300000 = 122002100000_5 86300000 = 20000101111100022_3 431130000 = 110440340120_6 614110000 = 2224203010000_5 667000000 = 1201111002002222201_3 2153100000 = 104233022322_7
Extensions
a(10)-a(13), a(19)-a(23), a(28)-a(29) added by Giovanni Resta, Jul 26 2015
Comments