cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260406 Numbers n such that (n-1)^2-1 divides 2^(n-1)-1.

Original entry on oeis.org

1, 3, 5, 17, 37, 257, 457, 1297, 2557, 4357, 6481, 8009, 11953, 26321, 44101, 47521, 47881, 49681, 57241, 65537, 74449, 84421, 97813, 141157, 157081, 165601, 225457, 278497, 310591, 333433, 365941, 403901, 419711, 476737, 557041, 560737, 576721, 647089, 1011961
Offset: 1

Views

Author

M. F. Hasler, Jul 24 2015

Keywords

Comments

The initial 1 is conventional.
647089 is the smallest composite number of this sequence (which makes it different from A081762).
The next composite number in this sequence is a(1000) = F_5 = 4294967297. - Robert G. Wilson v, Jul 25 2015
The Fermat numbers 2^2^k+1 = A000215(k) with k>1 are a subsequence of this sequence. I conjecture that they are equal to the intersection of this and A260407 (apart from the conventional 1), i.e., the numbers such that (n-1)^4-1 divides 2^(n-1)-1.

Crossrefs

Programs

  • Magma
    [n: n in [3..6*10^5] | (2^(n-1)-1) mod ((n-1)^2-1) eq 0]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    fQ[n_] := PowerMod[2, n - 1, (n - 1)^2 - 1] == 1; Select[ Range[3, 1200000], fQ] (* Robert G. Wilson v, Jul 25 2015 *)
  • PARI
    forstep(n=1,1e7,2,Mod(2,(n-1)^2-1)^(n-1)==1&&print1(n","))
    

A260072 Primes p such that (p-1)^2+1 divides 2^(p-1)-1.

Original entry on oeis.org

17, 257, 8209, 65537, 649801
Offset: 1

Views

Author

Jaroslav Krizek, Jul 22 2015

Keywords

Comments

a(6), if it exists, is larger than 1.7*10^12. - Giovanni Resta, Jul 23 2015
N = 1382401 is the smallest composite number such that (n-1)^2+1 divides 2^(n-1)-1, cf. A260407; see also A081762 and A260406. The sequence contains all Fermat primes 2^2^k+1 > 5 (A019434). - M. F. Hasler, Jul 24 2015

Examples

			17 is in this sequence because (17 - 1)^2 + 1 = 257 divides 2^(17 - 1) - 1 = 65535; 65535 / 257 = 255.
		

Crossrefs

Cf. A081762 (primes p such that (p-1)^2 - 1 divides 2^(p-1) - 1).

Programs

  • Magma
    [n: n in [1..2000000] | IsPrime(n) and (2^(n-1)-1) mod ((n-1)^2 + 1) eq 0];
  • Mathematica
    fQ[n_] := PowerMod[2, n-1, (n-1)^2 + 1] == 1; p = 2; lst = {}; While[p < 10^9, If[ fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p] (* Robert G. Wilson v, Jul 24 2015 *)
Showing 1-2 of 2 results.