A260406 Numbers n such that (n-1)^2-1 divides 2^(n-1)-1.
1, 3, 5, 17, 37, 257, 457, 1297, 2557, 4357, 6481, 8009, 11953, 26321, 44101, 47521, 47881, 49681, 57241, 65537, 74449, 84421, 97813, 141157, 157081, 165601, 225457, 278497, 310591, 333433, 365941, 403901, 419711, 476737, 557041, 560737, 576721, 647089, 1011961
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1598
Programs
-
Magma
[n: n in [3..6*10^5] | (2^(n-1)-1) mod ((n-1)^2-1) eq 0]; // Vincenzo Librandi, Jul 26 2015
-
Mathematica
fQ[n_] := PowerMod[2, n - 1, (n - 1)^2 - 1] == 1; Select[ Range[3, 1200000], fQ] (* Robert G. Wilson v, Jul 25 2015 *)
-
PARI
forstep(n=1,1e7,2,Mod(2,(n-1)^2-1)^(n-1)==1&&print1(n","))
Comments