A260419 Square array T(n,m) read by antidiagonals, T(n,m) is the number of (m,n)-parking functions.
1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 5, 16, 11, 1, 1, 5, 16, 27, 16, 1, 1, 7, 25, 125, 81, 42, 1, 1, 7, 49, 125, 256, 378, 64, 1, 1, 9, 49, 243, 1296, 1184, 729, 163, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 11, 100, 729, 2401, 16807, 15625, 27213, 9529, 638, 1
Offset: 1
Examples
Table starts (see Table 1 in Aval & Bergeron link): n/m 1 2 3 4 5 ------------------------------ 1 |1, 1, 1, 1, 1, ... 2 |1, 3, 3, 5, 5, ... 3 |1, 4, 16, 16, 25, ... 4 |1, 11, 27, 125, 125, ... 5 |1, 16, 81, 256, 1296, ... 6 |...
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- Jean-Christophe Aval, François Bergeron, Interlaced rectangular parking functions, arXiv:1503.03991 [math.CO], 2015.
Crossrefs
Cf. A071201.
Formula
T(n,m) = m^(n-1), if m and n are coprime (see Lemma in Aval & Bergeron link).
Extensions
More terms from Alois P. Heinz, Nov 30 2015
Comments