cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260422 a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 4, 2, 9, 7, 6, 3, 16, 23, 14, 17, 12, 13, 8, 5, 27, 47, 36, 71, 24, 41, 28, 53, 21, 31, 22, 37, 15, 19, 10, 11, 42, 81, 70, 149, 54, 109, 106, 239, 38, 73, 62, 127, 44, 83, 80, 171, 34, 67, 48, 91, 35, 69, 56, 113, 26, 43, 32, 59, 18, 25, 20, 29, 63, 131, 122, 271, 105, 233, 216, 477, 82, 173, 159, 353, 155, 347, 345, 787, 57
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A205783(1+n), and each right hand child as A206074(n), when the parent contains n:
|
...................1...................
4 2
9......../ \........7 6......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 23 14 17 12 13 8 5
27 47 36 71 24 41 28 53 21 31 22 37 15 19 10 11
etc.

Crossrefs

Inverse: A260421.
Related permutations: A246202, A246378, A260423, A260425.
Differs from A246378 for the first time at n=16, where a(16)=27, while A246378(16)=26.

Programs

  • PARI
    uplim = (2^21) + (2^20);
    v206074 = vector(uplim);
    v205783 = vector(uplim); v205783[1] = 1;
    isA206074(n) = polisirreducible(Pol(binary(n)));
    i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", "));  if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); n++); print(n);
    A260422(n) = if(1==n, 1, if(0==(n%2), v205783[1+A260422(n/2)], v206074[A260422((n-1)/2)]));
    for(n=1, 8192, write("b260422.txt", n, " ", A260422(n)));

Formula

a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)).
As a composition of related permutations:
a(n) = A260423(A246378(n)).
a(n) = A260425(A246202(n)).

A260424 a(1) = 1, a(A206074(n)) = prime(a(n)), a(A205783(1+n)) = composite(a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 25, 26, 27, 31, 28, 37, 30, 32, 33, 34, 35, 41, 36, 44, 38, 43, 39, 47, 40, 46, 42, 53, 54, 45, 48, 49, 50, 59, 51, 61, 58, 52, 63, 67, 55, 71, 62, 56, 66, 57, 65, 73, 60, 79, 75, 83, 76, 89, 64, 68, 69, 109, 70, 97, 82, 101, 72, 103, 85, 81, 74, 127
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Comments

After 1, each term of A206075 resides in a separate infinite cycle. This follows because primes (A000040) is a subsequence of A206074 [see Thomas Ordowski's Feb 19 2014 comment in A206074] and thus each composite in A206074 is trapped into a trajectory containing only primes.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    default(primelimit,4294965247);
    uplim = 2^20;
    v255574 = vector(uplim); A255574 = n -> v255574[n];
    A255572 = n -> (n - A255574(n) - 1);
    A257000(n) = polisirreducible(Pol(binary(n)));
    v255574[1] = 0; i=0; j=0; n=2; while((n < uplim), v255574[n] = v255574[n-1]+A257000(n); n++);
    A002808(n)={ my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; \\ This function from M. F. Hasler
    A260424(n) = if(1==n, 1, if(A257000(n), prime(A260424(A255574(n))), A002808(A260424(A255572(n)))));
    for(n=1, 8192, write("b260424.txt", n, " ", A260424(n)));

Formula

a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], then a(n) = A000040(a(A255574(n))), otherwise [when n is in A205783], a(n) = A002808(a(A255572(n))).
As a composition of related permutations:
a(n) = A246378(A260421(n)).
a(n) = A245704(A260426(n)).

A260425 a(1) = 1, a(A014580(n)) = A206074(a(n)), a(A091242(n)) = A205783(1+a(n)), where A014580(n) [resp. A091242(n)] give binary codes for n-th irreducible [resp. reducible] polynomial over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 26, 14, 18, 19, 22, 27, 34, 40, 24, 11, 30, 32, 35, 42, 51, 23, 60, 38, 20, 46, 49, 31, 52, 63, 76, 43, 36, 92, 57, 33, 68, 17, 74, 48, 78, 95, 114, 64, 54, 25, 135, 86, 50, 37, 102, 47, 28, 111, 72, 118, 140, 67, 165, 96, 82, 39, 195, 79, 128, 75, 56, 150, 70, 44
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Crossrefs

Inverse: A260426.
Related permutations: A246201, A245704, A260422, A260423.
Differs from A245704 for the first time at n=16, where a(16) = 26, while A245704(16) = 25.

Programs

Formula

a(1) = 1; for n > 1, if A091225(n) = 1 [when n is in A014580], then a(n) = A206074(a(A091226(n))), otherwise [when n is in A091242], a(n) = A205783(1+a(A091245(n))).
As a composition of related permutations:
a(n) = A260422(A246201(n)).
a(n) = A260423(A245704(n)).
Showing 1-3 of 3 results.