cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).

Original entry on oeis.org

69, 77, 81, 121, 169, 205, 209, 261, 265, 275, 289, 295, 305, 321, 323, 327, 329, 339, 377, 405, 407, 437, 453, 473, 475, 481, 493, 517, 533, 551, 553, 559, 565, 575, 581, 583, 595, 625, 649, 667, 671, 689, 703, 707, 737, 747, 749, 755, 763, 767, 779, 781, 785, 805, 815, 833, 835, 851, 855, 861, 869, 893, 905
Offset: 1

Views

Author

Antti Karttunen, Jul 26 2015

Keywords

Crossrefs

Intersection of A002808 and A260427.
Intersection of A091212 and A206074.
Intersection of A091242 and A206075.
Complement of A257688 in A206074.

Programs

  • Maple
    f:= proc(n) local L,p,x;
      if isprime(n) then return false fi;
      L:= convert(n,base,2);
      p:= add(L[i]*x^(i-1),i=1..nops(L));
      irreduc(p) and not (Irreduc(p) mod 2);
    end proc:
    select(f, [$2..10000]); # Robert Israel, Jul 27 2015
  • Mathematica
    okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]];
    Select[Range[1000], okQ] (* Jean-François Alcover, Feb 06 2023 *)
  • PARI
    isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n));
    n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n)));