A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).
69, 77, 81, 121, 169, 205, 209, 261, 265, 275, 289, 295, 305, 321, 323, 327, 329, 339, 377, 405, 407, 437, 453, 473, 475, 481, 493, 517, 533, 551, 553, 559, 565, 575, 581, 583, 595, 625, 649, 667, 671, 689, 703, 707, 737, 747, 749, 755, 763, 767, 779, 781, 785, 805, 815, 833, 835, 851, 855, 861, 869, 893, 905
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..11585
Crossrefs
Programs
-
Maple
f:= proc(n) local L,p,x; if isprime(n) then return false fi; L:= convert(n,base,2); p:= add(L[i]*x^(i-1),i=1..nops(L)); irreduc(p) and not (Irreduc(p) mod 2); end proc: select(f, [$2..10000]); # Robert Israel, Jul 27 2015
-
Mathematica
okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]]; Select[Range[1000], okQ] (* Jean-François Alcover, Feb 06 2023 *)
-
PARI
isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n)); n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n)));