A260442 Sequence A260443 sorted into ascending order.
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 18, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 90, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233, 239, 241, 245, 251, 257, 263, 269, 270, 271, 277, 281, 283, 293, 307, 311
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
allocatemem(2^30); A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); isA260442(n) = (A260443(A048675(n)) == n); \\ The most naive version. A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])) \\ Charles R Greathouse IV, Apr 23 2015 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530. isA260442(n) = ((1==n) || isprime(n) || ((omega(n) == 1+(A061395(n)-A055396(n))) && (A260443(A048675(n)) == n))); \\ Somewhat optimized. i=0; n=0; while(i < 10001, n++; if(isA260442(n), write("b260442.txt", i, " ", n); i++)); \\ Antti Karttunen, Oct 14 2016
-
Python
from sympy import factorint, prime, primepi from operator import mul from functools import reduce def a048675(n): F=factorint(n) return 0 if n==1 else sum([F[i]*2**(primepi(i) - 1) for i in F]) def a003961(n): F=factorint(n) return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F]) def a(n): return n + 1 if n<2 else a003961(a(n//2)) if n%2==0 else a((n - 1)//2)*a((n + 1)//2) print([n for n in range(301) if a(a048675(n))==n]) # Indranil Ghosh, Jun 21 2017
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A260442 (FIXED-POINTS 0 1 (COMPOSE A260443 A048675))) ;; An optimized version: (define A260442 (MATCHING-POS 0 1 (lambda (n) (or (= 1 n) (= 1 (A010051 n)) (and (not (< (A001221 n) (+ 1 (A243055 n)))) (= n (A260443 (A048675 n)))))))) ;; Antti Karttunen, Oct 14 2016
Comments