cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260504 Number of chains in the poset of all odd-sized subsets of {1,2,...,n} ordered by inclusion.

Original entry on oeis.org

0, 1, 2, 7, 20, 91, 362, 2227, 11720, 92491, 608222, 5866147, 46290620, 527635291, 4857587282, 63886537267, 672183848720, 10019232896491, 118594819341542, 1975680877259587, 25983971598078020, 478434297205284091, 6921555837554655002, 139581878985127217107
Offset: 0

Views

Author

Geoffrey Critzer, Jul 27 2015

Keywords

Examples

			a(4) = 20 because there are C(4,1) + C(4,3) = 8 chains of length zero (these are the odd-sized subsets of {1,2,3,4}). There are 12 chains of length one: {{1},{1,2,3}}; {{1},{1,2,4}}; {{1},{1,3,4}}; {{2},{1,2,3}}; {{2},{1,2,4}}; {{2},{2,3,4}}; {{3},{1,2,3}}; {{3},{1,3,4}}; {{3},{2,3,4}}; {{4},{1,2,4}}; {{4},{1,3,4}}; {{4},{2,3,4}}.
		

Crossrefs

Programs

  • Maple
    # Assuming a(0) = 1:
    p := proc(n, z) option remember; local k; if n = 0 then 1 else
    normal(add(`if`(k mod 2 = 1, 0, binomial(n, k)*p(k, 0)*(z+1)^(n-k-1)), k=0..n-1))
    fi end: A260504 := n -> p(n, 1): seq(A260504(n), n = 0..23); # Peter Luschny, Jun 19 2023
  • Mathematica
    nn = 20; c=Cosh[x]-1;s=Sinh[x];Range[0,nn]!CoefficientList[Series[(s^2 + s c + s)/(1 - c), {x, 0, nn}], x]

Formula

E.g.f.: (s^2 + s*c + s)/(1 - c) where s = sinh(x) and c = cosh(x) - 1.
a(n) ~ n! * (sqrt(3)+2 + (-1)^n*(sqrt(3)-2)) / log(2+sqrt(3))^(n+1). - Vaclav Kotesovec, Jul 27 2015