A260505 Number of binary words of length n with exactly one occurrence of subword 010 and exactly two occurrences of subword 101.
0, 0, 0, 0, 0, 1, 2, 7, 16, 38, 82, 175, 362, 736, 1468, 2885, 5596, 10736, 20398, 38423, 71818, 133307, 245890, 450970, 822788, 1493992, 2700800, 4862566, 8721608, 15588371, 27770338, 49320863, 87344004, 154263972, 271765362, 477622769, 837519742, 1465470968
Offset: 0
Examples
a(5) = 1: 10101. a(6) = 2: 101011, 110101. a(7) = 7: 0101101, 0110101, 1010110, 1010111, 1011010, 1101011, 1110101. a(8) = 16: 00101101, 00110101, 01011011, 01011101, 01101011, 01110101, 10101100, 10101110, 10101111, 10110100, 10111010, 11010110, 11010111, 11011010, 11101011, 11110101. a(9) = 38: 000101101, 000110101, 001011011, ..., 111011010, 111101011, 111110101. a(10) = 82: 0000101101, 0000110101, 0001011011, ..., 1111011010, 1111101011, 1111110101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,10,6,-18,11,6,-10,2,3,-2,-1).
Programs
-
Maple
gf:= -x^5*(2*x^2-x+1)*(x-1)^3/((x^2-x+1)^2*(x^2+x-1)^4): a:= n-> coeff(series(gf,x,n+1),x,n): seq(a(n), n=0..40);
-
Mathematica
LinearRecurrence[{6,-13,10,6,-18,11,6,-10,2,3,-2,-1},{0,0,0,0,0,1,2,7,16,38,82,175},40] (* Harvey P. Dale, Jun 26 2025 *)
Formula
G.f.: -x^5*(2*x^2-x+1)*(x-1)^3/((x^2-x+1)^2*(x^2+x-1)^4).