A259527 a(n) gives the number of sequences n = b_1 < b_2 < ... < b_t = A006255(n) such that b_1*b_2*...*b_t is a perfect square.
1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 8, 2, 16, 2, 2, 1, 64, 2, 128, 4, 2, 4, 512, 2, 1, 4, 1, 2, 8192, 2, 8192, 4, 2, 16, 2, 1, 65536, 64, 4, 2, 524288, 8, 1048576, 4, 4, 128, 8388608, 2, 1, 1, 8, 2, 67108864, 4, 2, 2, 4, 256, 536870912, 2, 2147483648, 2048, 2, 1, 1
Offset: 1
Keywords
Examples
For a(20)=4 the solutions are: s_0 = {20,24,30} with prod(s_0) = 120^2; s_1 = {20,24,25,30} with prod(s_1) = 600^2; s_2 = {20,21,24,27,28,30} with prod(s_2) = 15120^2; s_3 = {20,21,24,25,27,28,30} with prod(s_3) = 75600^2.
Links
- Peter Kagey, Table of n, a(n) for n = 1..1000
Extensions
More terms from Alois P. Heinz, Jul 16 2015
Comments