A260576 Least k such that the product of the first n primes of the form m^2+1 (A002496) divides k^2+1.
1, 3, 13, 327, 36673, 950117, 801495893, 5896798453, 760999599793, 3828797295053127, 520910599208391893, 2418812764637100821917, 793123421312468129647727, 6936392582189824489589830053, 31170731920863007986026123435697, 5284787778858696936313058199017107
Offset: 1
Keywords
Programs
-
Maple
with(numtheory):lst:={2}:nn:=100: for i from 1 to nn do: p:=i^2+1: if isprime(p) then lst:=lst union {p}: else fi: od: pr:=1: for n from 1 to 7 do: pr:=pr*lst[n]:ii:=0: for j from 1 to 10^9 while(ii=0) do: if irem(j^2+1,pr)=0 then ii:=1: printf("%d %d \n",n,j): fi: od: od:
Extensions
a(8)-a(17) from Hiroaki Yamanouchi, Aug 15 2015
Comments