A260611 a(n) = superfactorial(prime(n)-1) mod prime(n).
1, 2, 3, 6, 1, 8, 13, 1, 1, 17, 1, 6, 9, 1, 46, 30, 58, 50, 1, 1, 27, 78, 82, 34, 22, 10, 102, 106, 76, 15, 126, 1, 37, 138, 105, 1, 28, 1, 1, 93, 1, 19, 190, 81, 14, 198, 210, 1, 1, 107, 144, 1, 64, 250, 16, 262, 82, 1, 60, 53, 282, 155, 306, 1, 288, 203, 330, 189, 1, 136, 42, 1, 366
Offset: 1
Keywords
Examples
a(2) = superfactorial(2) mod 3 = (2!*1!) mod 3 = 2 mod 3 = 2.
Links
- Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 724 terms from Campbell)
Programs
-
Maple
a:= proc(n) option remember; local i, p, r, v; p, r, v:= ithprime(n), 1$2; for i from 2 to p-1 do v:= v*i mod p; r:= r*v mod p od; r end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 05 2015
-
Mathematica
Table[Mod[Superfactorial[Prime[n] - 1], Prime[n]], {n, 1, 175}]
-
PARI
a(n,p=prime(n))=my(t=Mod(1,p)); lift(prod(k=2,p-1,t*=k)) \\ Charles R Greathouse IV, Aug 05 2015