A260615 Irregular triangle read by rows: the n-th row is the continued fraction expansion of the sum of the reciprocals of the first n primes.
0, 2, 0, 1, 5, 1, 30, 1, 5, 1, 2, 12, 1, 3, 1, 2, 1, 9, 1, 1, 7, 1, 2, 1, 9, 1, 2, 1, 2, 12, 7, 1, 2, 2, 13, 1, 1, 1, 8, 13, 5, 4, 1, 2, 5, 8, 1, 2, 6, 1, 1, 4, 10, 1, 2, 3, 1, 3, 1, 2, 238, 1, 28, 1, 42, 2, 2, 7, 1, 1, 4, 1, 1, 1, 6, 1, 41, 3, 1, 1, 51, 1, 9, 2, 3, 2, 5, 1, 2, 1, 6, 1, 1, 1, 3, 3, 3, 1, 1, 1, 3, 3, 1, 2, 19, 1, 13, 1, 1, 3, 4, 7, 1, 1, 3, 2, 1, 10
Offset: 1
Examples
For row 3, the sum of the first three prime reciprocals equals 1/2 + 1/3 + 1/5 = 31/30. The continued fraction expansion of 31/30 is 1 + (1/30). Because of this, the terms in row 3 are 1 and 30. From _Michael De Vlieger_, Aug 29 2015: (Start) Triangle begins: 0, 2 0, 1, 5 1, 30 1, 5, 1, 2, 12 1, 3, 1, 2, 1, 9, 1, 1, 7 1, 2, 1, 9, 1, 2, 1, 2, 12, 7 1, 2, 2, 13, 1, 1, 1, 8, 13, 5, 4 1, 2, 5, 8, 1, 2, 6, 1, 1, 4, 10, 1, 2, 3, 1, 3 1, 2, 238, 1, 28, 1, 42, 2, 2, 7, 1, 1, 4 ... (End)
Links
- Matthew Campbell, Table of n, a(n) for n = 1..116505 The first 225 rows are in the b-file.
Crossrefs
Programs
-
Maple
seq(op(numtheory:-cfrac(s,'quotients')),s=ListTools:-PartialSums(map2(`/`,1,[seq(ithprime(i),i=1..20)]))); # Robert Israel, Sep 06 2015
-
Mathematica
Table[ContinuedFraction[Sum[1/Prime@k, {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Aug 29 2015 *)
-
PARI
row(n) = contfrac(sum(k=1, n, 1/prime(k))); tabf(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, Sep 18 2015