A260640 Numbers n such that binomial(3*n,n) == 0 (mod n).
1, 3, 6, 12, 21, 35, 44, 55, 60, 70, 78, 88, 90, 99, 102, 110, 117, 119, 120, 133, 156, 171, 176, 180, 184, 204, 207, 220, 225, 230, 231, 234, 238, 240, 247, 252, 255, 285, 286, 300, 312, 341, 342, 348, 360, 368, 372, 391, 403, 408, 414, 425, 434, 460, 462, 465, 468, 481, 483, 494, 495, 504, 506, 510, 550, 555, 561, 572, 574, 585, 600
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- M. Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems, sect. III: Binomial coefficients modulo integers, binomod.gp (v.1.4, 11/2015).
Programs
-
Magma
[n: n in [1..600] |Binomial(3*n,n) mod n eq 0]; // Vincenzo Librandi, Jan 29 2016
-
Mathematica
Select[Range@ 600, Mod[Binomial[3 #, #], #] == 0 &] (* Michael De Vlieger, Nov 12 2015 *)
-
PARI
for(n=1,999,binomod(3*n,n,n)==0&&print1(n",")) \\ Using binomod.gp by M. Alekseyev, cf. links.
-
Python
from _future_ import division A260640_list, b = [], 3 for n in range(1,10**3): if not b % n: A260640_list.append(n) b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # Chai Wah Wu, Jan 27 2016
Comments