cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260640 Numbers n such that binomial(3*n,n) == 0 (mod n).

Original entry on oeis.org

1, 3, 6, 12, 21, 35, 44, 55, 60, 70, 78, 88, 90, 99, 102, 110, 117, 119, 120, 133, 156, 171, 176, 180, 184, 204, 207, 220, 225, 230, 231, 234, 238, 240, 247, 252, 255, 285, 286, 300, 312, 341, 342, 348, 360, 368, 372, 391, 403, 408, 414, 425, 434, 460, 462, 465, 468, 481, 483, 494, 495, 504, 506, 510, 550, 555, 561, 572, 574, 585, 600
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

See A014847 for the analog for 2n.

Crossrefs

Programs

  • Magma
    [n: n in [1..600] |Binomial(3*n,n) mod n eq 0]; // Vincenzo Librandi, Jan 29 2016
  • Mathematica
    Select[Range@ 600, Mod[Binomial[3 #, #], #] == 0 &] (* Michael De Vlieger, Nov 12 2015 *)
  • PARI
    for(n=1,999,binomod(3*n,n,n)==0&&print1(n",")) \\ Using binomod.gp by M. Alekseyev, cf. links.
    
  • Python
    from _future_ import division
    A260640_list, b = [], 3
    for n in range(1,10**3):
        if not b % n:
            A260640_list.append(n)
        b = b*3*(3*n+2)*(3*n+1)//((2*n+2)*(2*n+1)) # Chai Wah Wu, Jan 27 2016