A260645 The number of central quasigroups (also known as T-quasigroups, or quasigroups affine over an abelian group) of order n, up to isomorphism.
1, 1, 5, 19, 19, 5, 41, 385, 231, 19, 109, 95, 155, 41, 95, 41387, 271, 231, 341, 361, 205, 109, 505, 1925, 3337, 155, 36118, 779, 811, 95, 929, 19823665, 545, 271, 779, 4389, 1331, 341, 775, 7315, 1639, 205, 1805, 2071, 4389, 505, 2161, 206935, 18099, 3337, 1355, 2945, 2755, 36118, 2071, 15785, 1705, 811, 3421, 1805, 3659, 929, 9471
Offset: 1
Links
- David Stanovsky, Table of n, a(n) for n = 1..63
- David Stanovský and Petr Vojtechovský, Central and medial quasigroups of small order, arxiv preprint arXiv:1511.03534 [math.GR], 2015.
Crossrefs
Cf. A226193.
Programs
-
GAP
# gives the number of central quasigroups over SmallGroup(n, k) LoadPackage("loops"); CQ := function( n, k ) local G, ct, elms, inv, A, f_reps, count,f, Cf, O, g_reps, g, Cfg, W, unused, c, Wc; G := SmallGroup( n, k ); G := IntoLoop( G ); ct := CayleyTable( G ); elms := Elements( G ); inv := List( List( [1..n], i -> elms[i]^(-1) ), x -> x![1] ); A := AutomorphismGroup( G ); f_reps := List( ConjugacyClasses( A ), Representative ); count := 0; for f in f_reps do Cf := Centralizer( A, f ); O := OrbitsDomain( Cf, A ); g_reps := List( O, x -> x[1] ); for g in g_reps do Cfg := Intersection( Cf, Centralizer( A, g ) ); W := Set( [1..n], w -> ct[w][ inv[ ct[w^f][w^g] ] ] ); unused := [1..n]; while not IsEmpty( unused ) do c := unused[1]; count := count + 1; if Size(W) = Length(unused) then unused := []; else Wc := Set( W, w -> ct[w][c] ); Wc := Union( Orbits( Cfg, Wc ) ); unused := Difference( unused, Wc ); fi; od; od; od; return count; end;
Comments