cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260664 Number of ordered triples of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 6, 18, 90, 192, 864, 1710, 5970, 13110, 36810, 75984, 210546, 410130, 1003908, 2045808, 4616730, 8950176, 19746720, 37297710, 78247344, 147410640, 294299424, 543058032, 1067679540, 1925323308, 3653769792, 6555529158, 12129597486, 21348640230
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 15 2015

Keywords

Examples

			a(3) = 18 because of the 18 triples of partitions of 3: (3,3,21), (3,3,111), (3,21,3), (3,21,21), (3,21,111), (3,111,3), (3,111,21), (3,111,111), (21,3,3), (21,3,21), (21,3,111), (21,21,3), (21,111,3), (111,3,3), (111,3,21), (111,3,111), (111,21,3) and (111,111,3);
a(3) = A000041(3-A001318(0))^3 - A000041(3-A001318(1))^3 - A000041(3-A001318(2))^3 = 3^3 - 2^3 - 1^3 = 27 - 8 - 1 = 18.
		

Crossrefs

Programs

  • Haskell
    a260664 = sum . zipWith (*) a087960_list . map a133042 . a260672_row
  • Mathematica
    Table[Sum[(Cos[Pi*j/2] - Sin[Pi*j/2]) * PartitionsP[n - ((6*j^2 + 6*j + 1)/16 - (2*j + 1)*(-1)^j/16)]^3, {j, 0, Floor[Sqrt[8*n/3]]}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 04 2016 *)
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

a(n) = p(n)^3 - p(n-k(1))^3 - p(n-k(2))^3 + p(n-k(3))^3 + p(n-k(4))^3 - p(n-k(5))^3 - ..., with p=A000041 and k=A001318, see Wilf link: p. 2, (3).
G.f.: Sum[p(n)^3*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n. - Vaclav Kotesovec, Jul 04 2016
a(n) ~ 2^(3/2) * exp(4*Pi*sqrt(n/3)) / (729 * 3^(1/4) * n^(11/4)). - Vaclav Kotesovec, May 20 2018