cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001318 Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ....

Original entry on oeis.org

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A026741. - Jud McCranie; corrected by Omar E. Pol, Jul 05 2012
From R. K. Guy, Dec 28 2005: (Start)
"Conway's relation twixt the triangular and pentagonal numbers: Divide the triangular numbers by 3 (when you can exactly):
0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 ...
0 - 1 2 .- .5 .7 .- 12 15 .- 22 26 .- .35 .40 .- ..51 ...
.....-.-.....+..+.....-..-.....+..+......-...-.......+....
"and you get the pentagonal numbers in pairs, one of positive rank and the other negative.
"Append signs according as the pair have the same (+) or opposite (-) parity.
"Then Euler's pentagonal number theorem is easy to remember:
"p(n-0) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - p(n-15) ++-- = 0^n
where p(n) is the partition function, the left side terminates before the argument becomes negative and 0^n = 1 if n = 0 and = 0 if n > 0.
"E.g. p(0) = 1, p(7) = p(7-1) + p(7-2) - p(7-5) - p(7-7) + 0^7 = 11 + 7 - 2 - 1 + 0 = 15."
(End)
The sequence may be used in order to compute sigma(n), as described in Euler's article. - Thomas Baruchel, Nov 19 2003
Number of levels in the partitions of n + 1 with parts in {1,2}.
a(n) is the number of 3 X 3 matrices (symmetrical about each diagonal) M = {{a, b, c}, {b, d, b}, {c, b, a}} such that a + b + c = b + d + b = n + 2, a,b,c,d natural numbers; example: a(3) = 5 because (a,b,c,d) = (2,2,1,1), (1,2,2,1), (1,1,3,3), (3,1,1,3), (2,1,2,3). - Philippe Deléham, Apr 11 2007
Also numbers a(n) such that 24*a(n) + 1 = (6*m - 1)^2 are odd squares: 1, 25, 49, 121, 169, 289, 361, ..., m = 0, +-1, +-2, ... . - Zak Seidov, Mar 08 2008
From Matthew Vandermast, Oct 28 2008: (Start)
Numbers n for which A000326(n) is a member of A000332. Cf. A145920.
This sequence contains all members of A000332 and all nonnegative members of A145919. For values of n such that n*(3*n - 1)/2 belongs to A000332, see A145919. (End)
Starting with offset 1 = row sums of triangle A168258. - Gary W. Adamson, Nov 21 2009
Starting with offset 1 = Triangle A101688 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
Starting with offset 1 can be considered the first in an infinite set generated from A026741. Refer to the array in A175005. - Gary W. Adamson, Apr 03 2010
Vertex number of a square spiral whose edges have length A026741. The two axes of the spiral forming an "X" are A000326 and A005449. The four semi-axes forming an "X" are A049452, A049453, A033570 and the numbers >= 2 of A033568. - Omar E. Pol, Sep 08 2011
A general formula for the generalized k-gonal numbers is given by n*((k - 2)*n - k + 4)/2, n=0, +-1, +-2, ..., k >= 5. - Omar E. Pol, Sep 15 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2*w = 2*x + y. - Clark Kimberling, Jun 04 2012
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. - Omar E. Pol, Aug 04 2012
a(n) is the sum of the largest parts of the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 26 2013
Conway's relation mentioned by R. K. Guy is a relation between triangular numbers and generalized pentagonal numbers, two sequences from different families, but as triangular numbers are also generalized hexagonal numbers in this case we have a relation between two sequences from the same family. - Omar E. Pol, Feb 01 2013
Start with the sequence of all 0's. Add n to each value of a(n) and the next n - 1 terms. The result is the generalized pentagonal numbers. - Wesley Ivan Hurt, Nov 03 2014
(6k + 1) | a(4k). (3k + 1) | a(4k+1). (3k + 2) | a(4k+2). (6k + 5) | a(4k+3). - Jon Perry, Nov 04 2014
Enge, Hart and Johansson proved: "Every generalised pentagonal number c >= 5 is the sum of a smaller one and twice a smaller one, that is, there are generalised pentagonal numbers a, b < c such that c = 2a + b." (see link theorem 5). - Peter Luschny, Aug 26 2016
The Enge, et al. result for c >= 5 also holds for c >= 2 if 0 is included as a generalized pentagonal number. That is, 2 = 2*1 + 0. - Michael Somos, Jun 02 2018
Suggestion for title, where n actually matches the list and b-file: "Generalized pentagonal numbers: k(n)*(3*k(n) - 1)/2, where k(n) = A001057(n) = [0, 1, -1, 2, -2, 3, -3, ...], n >= 0" - Daniel Forgues, Jun 09 2018 & Jun 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 25 2018
The last digits form a symmetric cycle of length 40 [0, 1, 2, 5, ..., 5, 2, 1, 0], i.e., a(n) == a(n + 40) (mod 10) and a(n) == a(40*k - n - 1) (mod 10), 40*k > n. - Alejandro J. Becerra Jr., Aug 14 2018
Only 2, 5, and 7 are prime. All terms are of the form k*(k+1)/6, where 3 | k or 3 | k+1. For k > 6, the value divisible by 3 must have another factor d > 2, which will remain after the division by 6. - Eric Snyder, Jun 03 2022
8*a(n) is the product of two even numbers one of which is n + n mod 2. - Peter Luschny, Jul 15 2022
a(n) is the dot product of [1, 2, 3, ..., n] and repeat[1, 1/2]. a(5) = 12 = [1, 2, 3, 4, 5] dot [1, 1/2, 1, 1/2, 1] = [1 + 1 + 3 + 2 + 5]. - Gary W. Adamson, Dec 10 2022
Every nonnegative number is the sum of four terms of this sequence [S. Realis]. - N. J. A. Sloane, May 07 2023
From Peter Bala, Jan 06 2025: (Start)
The sequence terms are the exponents in the expansions of the following infinite products:
1) Product_{n >= 1} (1 - s(n)*q^n) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ..., where s(n) = (-1)^(1 + mod(n+1,3)).
2) Product_{n >= 1} (1 - q^(2*n))*(1 - q^(3*n))^2/((1 - q^n)*(1 - q^(6*n))) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ....
3) Product_{n >= 1} (1 - q^n)*(1 - q^(4*n))*(1 - q^(6*n))^5/((1 - q^(2*n))*(1 - q^(3*n))*(1 - q^(12*n)))^2 = 1 - q + q^2 - q^5 - q^7 + q^12 - q^15 + q^22 + q^26 - q^35 + ....
4) Product_{n >= 1} (1 - q^(2*n))^13/((1 - (-1)^n*q^n)*(1 - q^(4*n)))^5 = 1 - 5*q + 7*q^2 - 11*q^5 + 13*q^7 - 17*q^12 + 19*q^15 - + .... See Oliver, Theorem 1.1. (End)

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 7*x^4 + 12*x^5 + 15*x^6 + 22*x^7 + 26*x^8 + 35*x^9 + ...
		

References

  • Enoch Haga, A strange sequence and a brilliant discovery, chapter 5 of Exploring prime numbers on your PC and the Internet, first revised ed., 2007 (and earlier ed.), pp. 53-70.
  • Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 117.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, (to appear), section 7.2.1.4, equation (18).
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., Wiley, NY, 1966, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A080995 (characteristic function), A026741 (first differences), A034828 (partial sums), A165211 (mod 2).
Cf. A000326 (pentagonal numbers), A005449 (second pentagonal numbers), A000217 (triangular numbers).
Indices of nonzero terms of A010815, i.e., the (zero-based) indices of 1-bits of the infinite binary word to which the terms of A068052 converge.
Union of A036498 and A036499.
Sequences of generalized k-gonal numbers: this sequence (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Column 1 of A195152.
Squares in APs: A221671, A221672.
Quadrisection: A049453(k), A033570(k), A033568(k+1), A049452(k+1), k >= 0.
Cf. A002620.

Programs

  • GAP
    a:=[0,1,2,5];; for n in [5..60] do a[n]:=2*a[n-2]-a[n-4]+3; od; a; # Muniru A Asiru, Aug 16 2018
    
  • Haskell
    a001318 n = a001318_list !! n
    a001318_list = scanl1 (+) a026741_list -- Reinhard Zumkeller, Nov 15 2015
    
  • Magma
    [(6*n^2 + 6*n + 1 - (2*n + 1)*(-1)^n)/16 : n in [0..50]]; // Wesley Ivan Hurt, Nov 03 2014
    
  • Magma
    [(3*n^2 + 2*n + (n mod 2) * (2*n + 1)) div 8: n in [0..70]]; // Vincenzo Librandi, Nov 04 2014
    
  • Maple
    A001318 := -(1+z+z**2)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
    A001318 := proc(n) (6*n^2+6*n+1)/16-(2*n+1)*(-1)^n/16 ; end proc: # R. J. Mathar, Mar 27 2011
  • Mathematica
    Table[n*(n+1)/6, {n, Select[Range[0, 100], Mod[#, 3] != 1 &]}]
    Select[Accumulate[Range[0,200]]/3,IntegerQ] (* Harvey P. Dale, Oct 12 2014 *)
    CoefficientList[Series[x (1 + x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,2,5,7},70] (* Harvey P. Dale, Jun 05 2017 *)
    a[ n_] := With[{m = Quotient[n + 1, 2]}, m (3 m + (-1)^n) / 2]; (* Michael Somos, Jun 02 2018 *)
  • PARI
    {a(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( x * (1 - x^3) / ((1 - x) * (1-x^2))^2 + x * O(x^n), n)}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = my(m = (n+1) \ 2); m * (3*m + (-1)^n) / 2}; /* Michael Somos, Jun 02 2018 */
    
  • Python
    def a(n):
        p = n % 2
        return (n + p)*(3*n + 2 - p) >> 3
    print([a(n) for n in range(60)])  # Peter Luschny, Jul 15 2022
    
  • Python
    def A001318(n): return n*(n+1)-(m:=n>>1)*(m+1)>>1 # Chai Wah Wu, Nov 23 2024
  • Sage
    @CachedFunction
    def A001318(n):
        if n == 0 : return 0
        inc = n//2 if is_even(n) else n
        return inc + A001318(n-1)
    [A001318(n) for n in (0..59)] # Peter Luschny, Oct 13 2012
    

Formula

Euler: Product_{n>=1} (1 - x^n) = Sum_{n=-oo..oo} (-1)^n*x^(n*(3*n - 1)/2).
A080995(a(n)) = 1: complement of A090864; A000009(a(n)) = A051044(n). - Reinhard Zumkeller, Apr 22 2006
Euler transform of length-3 sequence [2, 2, -1]. - Michael Somos, Mar 24 2011
a(-1 - n) = a(n) for all n in Z. a(2*n) = A005449(n). a(2*n - 1) = A000326(n). - Michael Somos, Mar 24 2011. [The extension of the recurrence to negative indices satisfies the signature (1,2,-2,-1,1), but not the definition of the sequence m*(3*m -1)/2, because there is no m such that a(-1) = 0. - Klaus Purath, Jul 07 2021]
a(n) = 3 + 2*a(n-2) - a(n-4). - Ant King, Aug 23 2011
Product_{k>0} (1 - x^k) = Sum_{k>=0} (-1)^k * x^a(k). - Michael Somos, Mar 24 2011
G.f.: x*(1 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(n + 1)/6 when n runs through numbers == 0 or 2 mod 3. - Barry E. Williams
a(n) = A008805(n-1) + A008805(n-2) + A008805(n-3), n > 2. - Ralf Stephan, Apr 26 2003
Sequence consists of the pentagonal numbers (A000326), followed by A000326(n) + n and then the next pentagonal number. - Jon Perry, Sep 11 2003
a(n) = (6*n^2 + 6*n + 1)/16 - (2*n + 1)*(-1)^n/16; a(n) = A034828(n+1) - A034828(n). - Paul Barry, May 13 2005
a(n) = Sum_{k=1..floor((n+1)/2)} (n - k + 1). - Paul Barry, Sep 07 2005
a(n) = A000217(n) - A000217(floor(n/2)). - Pierre CAMI, Dec 09 2007
If n even a(n) = a(n-1) + n/2 and if n odd a(n) = a(n-1) + n, n >= 2. - Pierre CAMI, Dec 09 2007
a(n)-a(n-1) = A026741(n) and it follows that the difference between consecutive terms is equal to n if n is odd and to n/2 if n is even. Hence this is a self-generating sequence that can be simply constructed from knowledge of the first term alone. - Ant King, Sep 26 2011
a(n) = (1/2)*ceiling(n/2)*ceiling((3*n + 1)/2). - Mircea Merca, Jul 13 2012
a(n) = (A008794(n+1) + A000217(n))/2 = A002378(n) - A085787(n). - Omar E. Pol, Jan 12 2013
a(n) = floor((n + 1)/2)*((n + 1) - (1/2)*floor((n + 1)/2) - 1/2). - Wesley Ivan Hurt, Jan 26 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A026741(n),
a(n) = a(n+2) - A001651(n),
a(n) = a(n+3) - A184418(n),
a(n) = a(n+4) - A007310(n),
a(n) = a(n+6) - A001651(n)*3 = a(n+6) - A016051(n),
a(n) = a(n+8) - A007310(n)*2 = a(n+8) - A091999(n),
a(n) = a(n+10)- A001651(n)*5 = a(n+10)- A072703(n),
a(n) = a(n+12)- A007310(n)*3,
a(n) = a(n+14)- A001651(n)*7. (End)
a(n) = (A007310(n+1)^2 - 1)/24. - Richard R. Forberg, May 27 2013; corrected by Zak Seidov, Mar 14 2015; further corrected by Jianing Song, Oct 24 2018
a(n) = Sum_{i = ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
G.f.: x*G(0), where G(k) = 1 + x*(3*k + 4)/(3*k + 2 - x*(3*k + 2)*(3*k^2 + 11*k + 10)/(x*(3*k^2 + 11*k + 10) + (k + 1)*(3*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
Sum_{n>=1} 1/a(n) = 6 - 2*Pi/sqrt(3). - Vaclav Kotesovec, Oct 05 2016
a(n) = Sum_{i=1..n} numerator(i/2) = Sum_{i=1..n} denominator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = A000292(A001651(n))/A001651(n), for n>0. - Ivan N. Ianakiev, May 08 2018
a(n) = ((-5 + (-1)^n - 6n)*(-1 + (-1)^n - 6n))/96. - José de Jesús Camacho Medina, Jun 12 2018
a(n) = Sum_{k=1..n} k/gcd(k,2). - Pedro Caceres, Apr 23 2019
Quadrisection. For r = 0,1,2,3: a(r + 4*k) = 6*k^2 + sqrt(24*a(r) + 1)*k + a(r), for k >= 1, with inputs (k = 0) {0,1,2,5}. These are the sequences A049453(k), A033570(k), A033568(k+1), A049452(k+1), for k >= 0, respectively. - Wolfdieter Lang, Feb 12 2021
a(n) = a(n-4) + sqrt(24*a(n-2) + 1), n >= 4. - Klaus Purath, Jul 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(log(3)-1). - Amiram Eldar, Feb 28 2022
a(n) = A002620(n) + A008805(n-1). Gary W. Adamson, Dec 10 2022
E.g.f.: (x*(7 + 3*x)*cosh(x) + (1 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Aug 01 2024

A054440 Number of ordered pairs of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0

Views

Author

Herbert S. Wilf, May 13 2000

Keywords

Examples

			a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
		

Crossrefs

Programs

  • Haskell
    a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
    -- Reinhard Zumkeller, Nov 15 2015
  • Maple
    with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

G.f.: Sum[p(n)^2*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n)) / (64 * 2^(1/4) * n^(7/4)). - Vaclav Kotesovec, May 20 2018
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k / (1 - x^k) + y^k / (1 - y^k)). - Ilya Gutkovskiy, Apr 24 2025

Extensions

Corrected and extended by James Sellers, May 23 2000

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

Original entry on oeis.org

1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.

Examples

			The a(0) = 1 through a(7) = 14 pairs:
  ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
              (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
                                (5)(32)   (6)(42)   (61)(7)
                                (5)(41)   (6)(51)   (7)(43)
                                (32)(41)  (321)(6)  (7)(52)
                                (41)(32)  (42)(51)  (7)(61)
                                          (51)(42)  (421)(7)
                                          (6)(321)  (43)(52)
                                                    (43)(61)
                                                    (52)(43)
                                                    (52)(61)
                                                    (61)(43)
                                                    (61)(52)
                                                    (7)(421)
		

Crossrefs

For subsets instead of partitions we have A000244, non-disjoint A000302.
If the partitions can have different sums we get A032302.
The non-strict version is A054440, non-disjoint A001255.
The unordered version is A108796, non-strict A260669.
A000041 counts integer partitions, strict A000009.
A000124 counts distinct possible sums of subsets of {1..n}.
A000712 counts distinct submultisets of partitions.
A002219 and A237258 count partitions of 2n including a partition of n.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
    Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)

Formula

a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025

A133042 Cubes of partition numbers.

Original entry on oeis.org

1, 1, 8, 27, 125, 343, 1331, 3375, 10648, 27000, 74088, 175616, 456533, 1030301, 2460375, 5451776, 12326391, 26198073, 57066625, 117649000, 246491883, 496793088, 1006012008, 1976656375, 3906984375, 7506509912, 14455457856
Offset: 0

Views

Author

Omar E. Pol, Oct 30 2007

Keywords

Examples

			a(10) = 74088 because the partition number of 10 is 42 and 42^3 is 74088.
		

Crossrefs

Cf. A000578, A030078. Partition number: A000041.

Programs

Formula

a(n) = A000041(n)^3.
a(n) ~ exp(Pi*sqrt(6*n)) / (192*sqrt(3)*n^3). - Vaclav Kotesovec, Dec 01 2015

A260672 Table read by rows: T(n,k) = n - A001318(k), k = 0 .. A193832(n)-1.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 3, 2, 5, 4, 3, 0, 6, 5, 4, 1, 7, 6, 5, 2, 0, 8, 7, 6, 3, 1, 9, 8, 7, 4, 2, 10, 9, 8, 5, 3, 11, 10, 9, 6, 4, 12, 11, 10, 7, 5, 0, 13, 12, 11, 8, 6, 1, 14, 13, 12, 9, 7, 2, 15, 14, 13, 10, 8, 3, 0, 16, 15, 14, 11, 9, 4, 1, 17, 16
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 15 2015

Keywords

Comments

Column k starts at row A001318(k); each column = A001477.

Examples

			.   0:    0
.   1:    1   0
.   2:    2   1   0
.   3:    3   2   1
.   4:    4   3   2
.   5:    5   4   3   0
.   6:    6   5   4   1
.   7:    7   6   5   2   0
.   8:    8   7   6   3   1
.   9:    9   8   7   4   2
.  10:   10   9   8   5   3
.  11:   11  10   9   6   4
.  12:   12  11  10   7   5   0
.  13:   13  12  11   8   6   1
.  14:   14  13  12   9   7   2
.  15:   15  14  13  10   8   3   0
.  16:   16  15  14  11   9   4   1
.  17:   17  16  15  12  10   5   2
.  18:   18  17  16  13  11   6   3
.  19:   19  18  17  14  12   7   4
.  20:   20  19  18  15  13   8   5  .
		

Crossrefs

Cf. A001318, A193832 (row lengths), A000041, A087960, A054440, A260664, A260706 (row sums).

Programs

  • Haskell
    a260672 n k = a260672_tabf !! n !! k
    a260672_row n = a260672_tabf !! n
    a260672_tabf = map (takeWhile (>= 0) . flip map a001318_list . (-)) [0..]

Formula

Number of m-tuples of partitions of n that have no part in common = Sum(A087960(k)*A000041(T(n,k))^m: k = 0 .. A193832(n+1)-1), e.g. A054440 (m=2) and A260664 (m=3); see Wilf link: p. 2, (3).

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

Original entry on oeis.org

1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

Crossrefs

Cf. A054440 (m=2), A260664 (m=3).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).

A304878 G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).

Original entry on oeis.org

1, 0, 0, 6, 0, 18, 30, 60, 66, 258, 402, 606, 1266, 1866, 3744, 6864, 9648, 15432, 30510, 41166, 72342, 118140, 178800, 266262, 441462, 652164, 1006410, 1567692, 2309958, 3385554, 5321838, 7530462, 11128440, 16799958, 23916474, 35123964, 51357318, 72495126
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} q(k)^m * x^k / Sum_{k>=0} q(k)*x^k, then a(n, m) ~ exp(Pi*sqrt((m^2 - 1)*n/3)) * (m^2 - 1)^(3*m/4 - 1/2) / (2^(2*m - 1/2) * 3^(m/4) * m^(3*m/2 - 1) * n^(3*m/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (81*6^(1/4)*n^(9/4)).

A366317 Number of unordered pairs of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 36, 55, 78, 120, 171, 253, 378, 528, 741, 1081, 1485, 2080, 2926, 4005, 5460, 7503, 10153, 13695, 18528, 24753, 32896, 43956, 57970, 76245, 100576, 131328, 171405, 223446, 289180, 373680, 482653, 619941, 794430, 1017451, 1296855
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
  {1,1}  {2,2}  {3,3}    {4,4}    {5,5}    {6,6}      {7,7}
                {3,21}   {4,31}   {5,32}   {6,42}     {7,43}
                {21,21}  {31,31}  {5,41}   {6,51}     {7,52}
                                  {32,32}  {42,42}    {7,61}
                                  {32,41}  {42,51}    {43,43}
                                  {41,41}  {51,51}    {43,52}
                                           {6,321}    {43,61}
                                           {42,321}   {52,52}
                                           {51,321}   {52,61}
                                           {321,321}  {61,61}
                                                      {7,421}
                                                      {43,421}
                                                      {52,421}
                                                      {61,421}
                                                      {421,421}
		

Crossrefs

For non-strict partitions we have A086737.
The disjoint case is A108796, non-strict A260669.
The ordered version is A304990, disjoint A032302.
The ordered disjoint case is A365662.
Excluding constant pairs gives A366132.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]

Formula

a(n) = A000217(A000009(n)).
Composition of A000009 and A000217.

A274733 Number of odd partitions in the multiset of intersections of the set of partitions of n with itself three times; also number of distinct partitions in that multiset.

Original entry on oeis.org

1, 1, 8, 26, 123, 334, 1295, 3222, 10172, 25300, 69258, 161259, 417582, 925972, 2200395, 4794092, 10769222, 22543912, 48728784, 98926942
Offset: 1

Views

Author

George Beck, Jul 04 2016

Keywords

Comments

Let a(n) be the number of odd partitions in the multiset intersections of the set of partitions of n with itself three times.
Form the p(n) x p(n) x p(n) matrix M of partitions of numbers ranging from 1 to n by taking the multiset intersections of all the triples of partitions of n. Then, ignoring the empty set, the number of odd partitions in M equals the number of distinct partitions in M. (Proved in Wilf et al., "A pentagonal number sieve".)
By numerical experimentation, it seems a(n) is the convolution of A000009 (with offset 1) and A260664. (conjectured)

Examples

			For an example for double intersections, see A274521.
		

Crossrefs

A304992 G.f.: Sum_{k>=0} A000041(k)^3 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 7, 18, 98, 210, 969, 1938, 7037, 15258, 44815, 93180, 262391, 518550, 1311015, 2657328, 6189160, 12124098, 27239760, 52063668, 111630480, 211503288, 432900236, 806091180, 1610854427, 2940167268, 5691072911, 10289144976, 19402974147, 34523231688
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} A000041(k)^m * x^k / Sum_{k>=0} A000009(k) * x^k, then a(n, m) ~ exp(Pi*sqrt((2*m^2 - 1)*n/3)) * ((2*m^2 - 1)^(m - 1/2) / (2^(3*m - 1) * 3^(m/2) * m^(2*m - 1) * n^m)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 289 * sqrt(17/3) * exp(Pi*sqrt(17*n/3)) / (186624*n^3).
Showing 1-10 of 10 results.