cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001255 Squares of partition numbers.

Original entry on oeis.org

1, 1, 4, 9, 25, 49, 121, 225, 484, 900, 1764, 3136, 5929, 10201, 18225, 30976, 53361, 88209, 148225, 240100, 393129, 627264, 1004004, 1575025, 2480625, 3833764, 5934096, 9060100, 13823524, 20839225, 31404816, 46812964, 69705801, 102880449, 151536100
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A000041(n)^2.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (48*n^2). - Vaclav Kotesovec, Dec 01 2015
Sum_{n>=1} 1/a(n) = A200089. - Amiram Eldar, May 01 2021
a(n) = A006907(n) + A051748(n) + A051749(n). - R. J. Mathar, Mar 09 2022
a(n) = [(x*y)^n] Product_{k>=1} 1 / ((1 - x^k) * (1 - y^k)). - Ilya Gutkovskiy, Apr 24 2025

Extensions

Extended by Ray Chandler, Nov 14 2005

A260664 Number of ordered triples of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 6, 18, 90, 192, 864, 1710, 5970, 13110, 36810, 75984, 210546, 410130, 1003908, 2045808, 4616730, 8950176, 19746720, 37297710, 78247344, 147410640, 294299424, 543058032, 1067679540, 1925323308, 3653769792, 6555529158, 12129597486, 21348640230
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 15 2015

Keywords

Examples

			a(3) = 18 because of the 18 triples of partitions of 3: (3,3,21), (3,3,111), (3,21,3), (3,21,21), (3,21,111), (3,111,3), (3,111,21), (3,111,111), (21,3,3), (21,3,21), (21,3,111), (21,21,3), (21,111,3), (111,3,3), (111,3,21), (111,3,111), (111,21,3) and (111,111,3);
a(3) = A000041(3-A001318(0))^3 - A000041(3-A001318(1))^3 - A000041(3-A001318(2))^3 = 3^3 - 2^3 - 1^3 = 27 - 8 - 1 = 18.
		

Crossrefs

Programs

  • Haskell
    a260664 = sum . zipWith (*) a087960_list . map a133042 . a260672_row
  • Mathematica
    Table[Sum[(Cos[Pi*j/2] - Sin[Pi*j/2]) * PartitionsP[n - ((6*j^2 + 6*j + 1)/16 - (2*j + 1)*(-1)^j/16)]^3, {j, 0, Floor[Sqrt[8*n/3]]}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 04 2016 *)
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

a(n) = p(n)^3 - p(n-k(1))^3 - p(n-k(2))^3 + p(n-k(3))^3 + p(n-k(4))^3 - p(n-k(5))^3 - ..., with p=A000041 and k=A001318, see Wilf link: p. 2, (3).
G.f.: Sum[p(n)^3*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n. - Vaclav Kotesovec, Jul 04 2016
a(n) ~ 2^(3/2) * exp(4*Pi*sqrt(n/3)) / (729 * 3^(1/4) * n^(11/4)). - Vaclav Kotesovec, May 20 2018

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

Original entry on oeis.org

1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

Crossrefs

Cf. A054440 (m=2), A260664 (m=3).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).

A129668 Number of different ways to divide an n X n X n cube into subcubes, considering only the list of parts.

Original entry on oeis.org

1, 2, 3, 11, 19, 121, 291, 1656
Offset: 1

Views

Author

Sergio Pimentel, May 02 2008, Jun 03 2008

Keywords

Comments

The Hadwiger problem analyzes how to divide a cube into n subcubes. This sequence analyzes in how many different ways the n X n X n cube can be divided into subcubes.
One of the 1656 possible divisions of the 8 X 8 X 8 cube (42 of 1 X 1 X 1; 4 of 2 X 2 X 2; 2 of 3 X 3 X 3; and 6 of 4 X 4 X 4) solves the last unknown of the Hadwiger problem, n=54, found in 1973.
This sequence does not consider the way the cubes are arranged. - Jon E. Schoenfield, Nov 14 2014

Examples

			a(3) = 3 because the 3 X 3 X 3 cube can be divided into subcubes in 3 different ways: a single 3 X 3 X 3 cube, a 2 X 2 X 2 plus 19 1 X 1 X 1 cubes, or 27 1 X 1 X 1 cubes.
a(4) = 11 because the 4 X 4 X 4 cube can be divided into 11 different combinations of subcubes. The table below lists each of the 11 combinations and gives the number of ways those subcubes can be arranged:
   (1) 64 1 X 1 X 1 cubes                       in   1 way
   (2) 56 1 X 1 X 1 cubes and 1 2 X 2 X 2 cube  in  27 ways
   (3) 48 1 X 1 X 1 cubes and 2 2 X 2 X 2 cubes in 193 ways
   (4) 40 1 X 1 X 1 cubes and 3 2 X 2 X 2 cubes in 544 ways
   (5) 32 1 X 1 X 1 cubes and 4 2 X 2 X 2 cubes in 707 ways
   (6) 24 1 X 1 X 1 cubes and 5 2 X 2 X 2 cubes in 454 ways
   (7) 16 1 X 1 X 1 cubes and 6 2 X 2 X 2 cubes in 142 ways
   (8)  8 1 X 1 X 1 cubes and 7 2 X 2 X 2 cubes in  20 ways
   (9)  8 2 X 2 X 2 cubes                       in   1 way
  (10) 37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube  in   8 ways
  (11)  1 4 X 4 X 4 cube                        in   1 way
The total number of arrangements is 2098 = A228267(4,4,4).
		

Crossrefs

Cf. A014544, A228267 (with multiplicity), A259792 (arithmetic instead of geometric partition).
Cf. A034295 (same problem in 2 dimensions rather than 3).

Formula

a(n) <= A133042(n) = A000041(n)^3. - David A. Corneth, Nov 25 2017
a(n) <= A259792(n). - R. J. Mathar, Nov 27 2017

A304992 G.f.: Sum_{k>=0} A000041(k)^3 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 7, 18, 98, 210, 969, 1938, 7037, 15258, 44815, 93180, 262391, 518550, 1311015, 2657328, 6189160, 12124098, 27239760, 52063668, 111630480, 211503288, 432900236, 806091180, 1610854427, 2940167268, 5691072911, 10289144976, 19402974147, 34523231688
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} A000041(k)^m * x^k / Sum_{k>=0} A000009(k) * x^k, then a(n, m) ~ exp(Pi*sqrt((2*m^2 - 1)*n/3)) * ((2*m^2 - 1)^(m - 1/2) / (2^(3*m - 1) * 3^(m/2) * m^(2*m - 1) * n^m)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 289 * sqrt(17/3) * exp(Pi*sqrt(17*n/3)) / (186624*n^3).
Showing 1-5 of 5 results.