cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A054440 Number of ordered pairs of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0

Views

Author

Herbert S. Wilf, May 13 2000

Keywords

Examples

			a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
		

Crossrefs

Programs

  • Haskell
    a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
    -- Reinhard Zumkeller, Nov 15 2015
  • Maple
    with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

G.f.: Sum[p(n)^2*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n)) / (64 * 2^(1/4) * n^(7/4)). - Vaclav Kotesovec, May 20 2018
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k / (1 - x^k) + y^k / (1 - y^k)). - Ilya Gutkovskiy, Apr 24 2025

Extensions

Corrected and extended by James Sellers, May 23 2000

A108796 Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
Offset: 0

Views

Author

Wouter Meeussen, Jul 09 2005

Keywords

Comments

Counted as orderless pairs since intersection is commutative.

Examples

			Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From _Gus Wiseman_, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
  ((6),(5,1))
  ((6),(4,2))
  ((6),(3,2,1))
  ((5,1),(4,2))
(End)
		

Crossrefs

Column k=2 of A258280.
Main diagonal of A284593 times (1/2).
This is the strict case of A260669.
The ordered version is A365662 = strict case of A054440.
This is the disjoint case of A366132, with twins A366317.
A000041 counts integer partitions, strict A000009.
A002219 counts biquanimous partitions, strict A237258, ordered A064914.

Programs

  • Mathematica
    using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
    nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* Gus Wiseman, Oct 07 2023 *)
  • PARI
    a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023

Formula

a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - Alois P. Heinz, Mar 31 2017
a(n) = ceiling(A365662(n)/2). - Gus Wiseman, Oct 07 2023

Extensions

Name edited by Gus Wiseman, Oct 10 2023
a(0)=1 prepended by Alois P. Heinz, Feb 09 2024

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

Original entry on oeis.org

1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.

Examples

			The a(0) = 1 through a(7) = 14 pairs:
  ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
              (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
                                (5)(32)   (6)(42)   (61)(7)
                                (5)(41)   (6)(51)   (7)(43)
                                (32)(41)  (321)(6)  (7)(52)
                                (41)(32)  (42)(51)  (7)(61)
                                          (51)(42)  (421)(7)
                                          (6)(321)  (43)(52)
                                                    (43)(61)
                                                    (52)(43)
                                                    (52)(61)
                                                    (61)(43)
                                                    (61)(52)
                                                    (7)(421)
		

Crossrefs

For subsets instead of partitions we have A000244, non-disjoint A000302.
If the partitions can have different sums we get A032302.
The non-strict version is A054440, non-disjoint A001255.
The unordered version is A108796, non-strict A260669.
A000041 counts integer partitions, strict A000009.
A000124 counts distinct possible sums of subsets of {1..n}.
A000712 counts distinct submultisets of partitions.
A002219 and A237258 count partitions of 2n including a partition of n.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
    Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)

Formula

a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025

A006907 Number of zeros in character table of symmetric group S_n.

Original entry on oeis.org

0, 0, 1, 4, 10, 29, 55, 153, 307, 588, 1018, 2230, 3543, 6878, 11216, 20615, 33355, 57980, 90194, 155176, 239327, 395473, 604113, 970294, 1453749, 2323476, 3425849, 5349414, 7905133, 11963861, 17521274, 26472001, 38054619, 56756488, 81683457, 119005220, 170498286, 247619748
Offset: 1

Views

Author

Keywords

References

  • J. McKay, personal communication to N. J. A. Sloane, circa 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    A006907 := n -> Sum(Irr(CharacterTable("Symmetric", n)), chi -> Number(chi, x->x=0)); # Eric M. Schmidt, Jul 13 2012, simplified Jul 26 2012
  • Mathematica
    a[n_] := Count[FiniteGroupData[{"SymmetricGroup", n}, "CharacterTable"], 0, 2]; Array[a, 10] (* Jean-François Alcover, Oct 08 2016 *)

Formula

a(n) + A051748(n) + A051749(n) = A001255(n). - R. J. Mathar, Mar 09 2022

Extensions

More terms from Vladeta Jovovic, May 20 2003
More terms from Eric M. Schmidt, Jul 13 2012
a(36)-a(38) found by Alexander R. Miller (see 2019 reference). - N. J. A. Sloane, Jul 07 2020

A133042 Cubes of partition numbers.

Original entry on oeis.org

1, 1, 8, 27, 125, 343, 1331, 3375, 10648, 27000, 74088, 175616, 456533, 1030301, 2460375, 5451776, 12326391, 26198073, 57066625, 117649000, 246491883, 496793088, 1006012008, 1976656375, 3906984375, 7506509912, 14455457856
Offset: 0

Views

Author

Omar E. Pol, Oct 30 2007

Keywords

Examples

			a(10) = 74088 because the partition number of 10 is 42 and 42^3 is 74088.
		

Crossrefs

Cf. A000578, A030078. Partition number: A000041.

Programs

Formula

a(n) = A000041(n)^3.
a(n) ~ exp(Pi*sqrt(6*n)) / (192*sqrt(3)*n^3). - Vaclav Kotesovec, Dec 01 2015

A259399 a(n) = Sum_{k=0..n} p(k)^2, where p(k) is the partition function A000041.

Original entry on oeis.org

1, 2, 6, 15, 40, 89, 210, 435, 919, 1819, 3583, 6719, 12648, 22849, 41074, 72050, 125411, 213620, 361845, 601945, 995074, 1622338, 2626342, 4201367, 6681992, 10515756, 16449852, 25509952, 39333476, 60172701, 91577517, 138390481, 208096282, 310976731, 462512831
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Comments

In general, Sum_{k=0..n} p(k)^m ~ sqrt(6*n)/(m*Pi) * p(n)^m ~ exp(m*Pi*sqrt(2*n/3)) / (m * Pi * 3^((m-1)/2) * 2^(2*m-1/2) * n^(m-1/2)), for m >= 1.

Crossrefs

Partial sums of A001255.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          combinat[numbpart](n)^2+a(n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 21 2018
  • Mathematica
    Table[Sum[PartitionsP[k]^2,{k,0,n}],{n,0,50}]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*sqrt(6)*Pi*n^(3/2)).
a(n) = 1 + A209536(n). - Alois P. Heinz, Oct 21 2018

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

Original entry on oeis.org

1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

Crossrefs

Cf. A054440 (m=2), A260664 (m=3).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).

A304990 Squares of number of partitions into distinct parts.

Original entry on oeis.org

1, 1, 1, 4, 4, 9, 16, 25, 36, 64, 100, 144, 225, 324, 484, 729, 1024, 1444, 2116, 2916, 4096, 5776, 7921, 10816, 14884, 20164, 27225, 36864, 49284, 65536, 87616, 115600, 152100, 200704, 262144, 342225, 446224, 577600, 746496, 964324, 1238769, 1587600
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PartitionsQ[n]^2, {n, 0, 50}]

Formula

a(n) ~ exp(2*Pi*sqrt(n/3)) / (16*sqrt(3)*n^(3/2)).
a(n) = A000009(n)^2.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k) * (1 + y^k). - Ilya Gutkovskiy, Apr 24 2025

A182988 The number of dominance pairs of integer partitions of n according to either/or dominance order, where dominance between two partitions x and y means that x is majorized by y or y is majorized by x.

Original entry on oeis.org

1, 1, 4, 9, 25, 49, 117, 217, 454, 830, 1594, 2796, 5159, 8777, 15415, 25810, 43819, 71595, 118629, 190148, 307519, 485660, 769382, 1195807, 1864617, 2857630, 4384962, 6641332, 10052272, 15043925, 22501510, 33315580, 49267369, 72250341, 105746966, 153646123
Offset: 0

Views

Author

Stephen DeSalvo, Feb 06 2011, Feb 13 2011

Keywords

Comments

For two integer partitions of n chosen uniformly at random, a(n)/p(n)^2, where p(n) is the number of partitions of n, is the probability that one dominates the other.
As an example, consider the partitions (4,3,1) and (3,3,2).
4 >= 3, 4+3 >= 3+3, and 4+3+1 = 3+3+2, so we say (4,3,1) majorizes/dominates (3,3,2).
As a non-example, consider (4,1,1,1) and (3,3,1).
4 >= 3, but 4+1 < 3+3, so (4,1,1,1) does NOT dominate (3,3,1).
3 < 4, so (3,3,1) does NOT dominate (4,1,1,1).
Thus the pair (4,1,1,1) and (3,3,1) is not a dominance pair, and does not contribute to a(7).

Examples

			For n=1,2,3,4,5, a(n) = p(n)^2, since these values of n give a linear order for integer partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, j, t) option remember; `if`(n0,
           b(n, m, i, j-1, true), 0)+b(n, m, i-1, j, false)+
           b(n-i, m-j, min(n-i,i), min(m-j,j), true))))
        end:
    a:= n-> 2*b(n$4, true)-combinat[numbpart](n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 09 2015
  • Mathematica
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Min[n-i, i], Min[m-j, j], True]]]]; a[n_] := 2*b[n, n, n, n, True] - PartitionsP[n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 07 2015

A051749 Number of character table entries of the symmetric group S_n which are > 0.

Original entry on oeis.org

1, 3, 6, 14, 26, 58, 98, 194, 344, 652, 1165, 2020, 3552, 6077, 10362, 17080, 28570, 46836, 77045, 122013, 198461, 310602, 494008, 767237, 1205391, 1828252, 2846995, 4277605, 6520106, 9795470, 14738493, 21750402, 32582580, 47614253, 70213289
Offset: 1

Views

Author

JOHN MCKAY (mckay(AT)cs.concordia.ca), Dec 08 1999

Keywords

Crossrefs

Programs

Formula

A006907(n) + A051748(n) + a(n) = A001255(n). - R. J. Mathar, Mar 09 2022

Extensions

More terms from Eric M. Schmidt, Jul 14 2012
Showing 1-10 of 28 results. Next