A001255
Squares of partition numbers.
Original entry on oeis.org
1, 1, 4, 9, 25, 49, 121, 225, 484, 900, 1764, 3136, 5929, 10201, 18225, 30976, 53361, 88209, 148225, 240100, 393129, 627264, 1004004, 1575025, 2480625, 3833764, 5934096, 9060100, 13823524, 20839225, 31404816, 46812964, 69705801, 102880449, 151536100
Offset: 0
A366132
Number of unordered pairs of distinct strict integer partitions of n.
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 6, 10, 15, 28, 45, 66, 105, 153, 231, 351, 496, 703, 1035, 1431, 2016, 2850, 3916, 5356, 7381, 10011, 13530, 18336, 24531, 32640, 43660, 57630, 75855, 100128, 130816, 170820, 222778, 288420, 372816, 481671, 618828, 793170, 1016025, 1295245
Offset: 0
The a(3) = 1 through a(8) = 15 pairs of strict partitions:
{3,21} {4,31} {5,32} {6,42} {7,43} {8,53}
{5,41} {6,51} {7,52} {8,62}
{41,32} {51,42} {7,61} {8,71}
{6,321} {52,43} {62,53}
{42,321} {61,43} {71,53}
{51,321} {61,52} {71,62}
{7,421} {8,431}
{43,421} {8,521}
{52,421} {53,431}
{61,421} {53,521}
{62,431}
{62,521}
{71,431}
{71,521}
{521,431}
For subsets instead of partitions we have
A006516, non-disjoint
A003462.
For non-strict partitions we have
A355389.
The ordered version is 2*a(n).
A002219 and
A237258 count partitions of 2n including a partition of n.
-
Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]
A366317
Number of unordered pairs of strict integer partitions of n.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 10, 15, 21, 36, 55, 78, 120, 171, 253, 378, 528, 741, 1081, 1485, 2080, 2926, 4005, 5460, 7503, 10153, 13695, 18528, 24753, 32896, 43956, 57970, 76245, 100576, 131328, 171405, 223446, 289180, 373680, 482653, 619941, 794430, 1017451, 1296855
Offset: 0
The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
{1,1} {2,2} {3,3} {4,4} {5,5} {6,6} {7,7}
{3,21} {4,31} {5,32} {6,42} {7,43}
{21,21} {31,31} {5,41} {6,51} {7,52}
{32,32} {42,42} {7,61}
{32,41} {42,51} {43,43}
{41,41} {51,51} {43,52}
{6,321} {43,61}
{42,321} {52,52}
{51,321} {52,61}
{321,321} {61,61}
{7,421}
{43,421}
{52,421}
{61,421}
{421,421}
For non-strict partitions we have
A086737.
The ordered disjoint case is
A365662.
Excluding constant pairs gives
A366132.
A002219 and
A237258 count partitions of 2n including a partition of n.
-
Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]
A304987
G.f.: Sum_{k>=0} A000041(k) * x^k / Sum_{k>=0} A000009(k)^2 * x^k.
Original entry on oeis.org
1, 0, 1, -2, 2, -6, 3, -16, 17, -34, 47, -78, 153, -178, 373, -530, 954, -1410, 2280, -3896, 5908, -9988, 15170, -25908, 40659, -65136, 105967, -169056, 276483, -435624, 712052, -1139814, 1839535, -2955466, 4745201, -7689672, 12303439, -19866340, 31904000
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304989
G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k)^2 * x^k.
Original entry on oeis.org
1, 0, 3, 2, 16, 10, 59, 32, 187, 90, 519, 152, 1439, 164, 3525, -246, 8904, -2500, 21748, -10836, 53918, -36508, 131424, -115266, 328703, -336608, 812615, -957464, 2046225, -2634166, 5152190, -7145682, 13121677, -19039178, 33473773, -50395004, 86035125
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A383354
Squares of plane partition numbers.
Original entry on oeis.org
1, 1, 9, 36, 169, 576, 2304, 7396, 25600, 79524, 250000, 737881, 2187441, 6175225, 17363889, 47320641, 127622209, 336135556, 876219201, 2240128900, 5666777284, 14112014436, 34772925625, 84554753089, 203576025636, 484461937089, 1142215875025, 2665572144964, 6166451098756
Offset: 0
-
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]^2
Showing 1-6 of 6 results.