A054440
Number of ordered pairs of partitions of n with no common parts.
Original entry on oeis.org
1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0
Herbert S. Wilf, May 13 2000
a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
- Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Wikipedia, Pentagonal number theorem
-
a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
-- Reinhard Zumkeller, Nov 15 2015
-
with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
A260664
Number of ordered triples of partitions of n with no common parts.
Original entry on oeis.org
1, 0, 6, 18, 90, 192, 864, 1710, 5970, 13110, 36810, 75984, 210546, 410130, 1003908, 2045808, 4616730, 8950176, 19746720, 37297710, 78247344, 147410640, 294299424, 543058032, 1067679540, 1925323308, 3653769792, 6555529158, 12129597486, 21348640230
Offset: 0
a(3) = 18 because of the 18 triples of partitions of 3: (3,3,21), (3,3,111), (3,21,3), (3,21,21), (3,21,111), (3,111,3), (3,111,21), (3,111,111), (21,3,3), (21,3,21), (21,3,111), (21,21,3), (21,111,3), (111,3,3), (111,3,21), (111,3,111), (111,21,3) and (111,111,3);
a(3) = A000041(3-A001318(0))^3 - A000041(3-A001318(1))^3 - A000041(3-A001318(2))^3 = 3^3 - 2^3 - 1^3 = 27 - 8 - 1 = 18.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
- Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Wikipedia, Pentagonal number theorem
-
a260664 = sum . zipWith (*) a087960_list . map a133042 . a260672_row
-
Table[Sum[(Cos[Pi*j/2] - Sin[Pi*j/2]) * PartitionsP[n - ((6*j^2 + 6*j + 1)/16 - (2*j + 1)*(-1)^j/16)]^3, {j, 0, Floor[Sqrt[8*n/3]]}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 04 2016 *)
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
A304877
G.f.: Sum_{k>=0} q(k)^2 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).
Original entry on oeis.org
1, 0, 0, 2, 0, 4, 4, 8, 4, 20, 20, 28, 38, 52, 80, 128, 128, 176, 300, 316, 476, 648, 832, 972, 1428, 1720, 2340, 3014, 3844, 4588, 6556, 7476, 9760, 12588, 15596, 19480, 25140, 29796, 37728, 47604, 58140, 70856, 90148, 107692, 133228, 167284, 198692, 242728
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304878
G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).
Original entry on oeis.org
1, 0, 0, 6, 0, 18, 30, 60, 66, 258, 402, 606, 1266, 1866, 3744, 6864, 9648, 15432, 30510, 41166, 72342, 118140, 178800, 266262, 441462, 652164, 1006410, 1567692, 2309958, 3385554, 5321838, 7530462, 11128440, 16799958, 23916474, 35123964, 51357318, 72495126
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304992
G.f.: Sum_{k>=0} A000041(k)^3 * x^k / Sum_{k>=0} A000009(k) * x^k.
Original entry on oeis.org
1, 0, 7, 18, 98, 210, 969, 1938, 7037, 15258, 44815, 93180, 262391, 518550, 1311015, 2657328, 6189160, 12124098, 27239760, 52063668, 111630480, 211503288, 432900236, 806091180, 1610854427, 2940167268, 5691072911, 10289144976, 19402974147, 34523231688
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.
Comments