cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054440 Number of ordered pairs of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0

Views

Author

Herbert S. Wilf, May 13 2000

Keywords

Examples

			a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
		

Crossrefs

Programs

  • Haskell
    a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
    -- Reinhard Zumkeller, Nov 15 2015
  • Maple
    with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

G.f.: Sum[p(n)^2*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n)) / (64 * 2^(1/4) * n^(7/4)). - Vaclav Kotesovec, May 20 2018
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k / (1 - x^k) + y^k / (1 - y^k)). - Ilya Gutkovskiy, Apr 24 2025

Extensions

Corrected and extended by James Sellers, May 23 2000

A260664 Number of ordered triples of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 6, 18, 90, 192, 864, 1710, 5970, 13110, 36810, 75984, 210546, 410130, 1003908, 2045808, 4616730, 8950176, 19746720, 37297710, 78247344, 147410640, 294299424, 543058032, 1067679540, 1925323308, 3653769792, 6555529158, 12129597486, 21348640230
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 15 2015

Keywords

Examples

			a(3) = 18 because of the 18 triples of partitions of 3: (3,3,21), (3,3,111), (3,21,3), (3,21,21), (3,21,111), (3,111,3), (3,111,21), (3,111,111), (21,3,3), (21,3,21), (21,3,111), (21,21,3), (21,111,3), (111,3,3), (111,3,21), (111,3,111), (111,21,3) and (111,111,3);
a(3) = A000041(3-A001318(0))^3 - A000041(3-A001318(1))^3 - A000041(3-A001318(2))^3 = 3^3 - 2^3 - 1^3 = 27 - 8 - 1 = 18.
		

Crossrefs

Programs

  • Haskell
    a260664 = sum . zipWith (*) a087960_list . map a133042 . a260672_row
  • Mathematica
    Table[Sum[(Cos[Pi*j/2] - Sin[Pi*j/2]) * PartitionsP[n - ((6*j^2 + 6*j + 1)/16 - (2*j + 1)*(-1)^j/16)]^3, {j, 0, Floor[Sqrt[8*n/3]]}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 04 2016 *)
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

a(n) = p(n)^3 - p(n-k(1))^3 - p(n-k(2))^3 + p(n-k(3))^3 + p(n-k(4))^3 - p(n-k(5))^3 - ..., with p=A000041 and k=A001318, see Wilf link: p. 2, (3).
G.f.: Sum[p(n)^3*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n. - Vaclav Kotesovec, Jul 04 2016
a(n) ~ 2^(3/2) * exp(4*Pi*sqrt(n/3)) / (729 * 3^(1/4) * n^(11/4)). - Vaclav Kotesovec, May 20 2018

A304877 G.f.: Sum_{k>=0} q(k)^2 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 4, 8, 4, 20, 20, 28, 38, 52, 80, 128, 128, 176, 300, 316, 476, 648, 832, 972, 1428, 1720, 2340, 3014, 3844, 4588, 6556, 7476, 9760, 12588, 15596, 19480, 25140, 29796, 37728, 47604, 58140, 70856, 90148, 107692, 133228, 167284, 198692, 242728
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(3) * exp(Pi*sqrt(n)) / (2^(11/2) * n^(3/2)).

A304878 G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).

Original entry on oeis.org

1, 0, 0, 6, 0, 18, 30, 60, 66, 258, 402, 606, 1266, 1866, 3744, 6864, 9648, 15432, 30510, 41166, 72342, 118140, 178800, 266262, 441462, 652164, 1006410, 1567692, 2309958, 3385554, 5321838, 7530462, 11128440, 16799958, 23916474, 35123964, 51357318, 72495126
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} q(k)^m * x^k / Sum_{k>=0} q(k)*x^k, then a(n, m) ~ exp(Pi*sqrt((m^2 - 1)*n/3)) * (m^2 - 1)^(3*m/4 - 1/2) / (2^(2*m - 1/2) * 3^(m/4) * m^(3*m/2 - 1) * n^(3*m/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (81*6^(1/4)*n^(9/4)).

A304992 G.f.: Sum_{k>=0} A000041(k)^3 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 7, 18, 98, 210, 969, 1938, 7037, 15258, 44815, 93180, 262391, 518550, 1311015, 2657328, 6189160, 12124098, 27239760, 52063668, 111630480, 211503288, 432900236, 806091180, 1610854427, 2940167268, 5691072911, 10289144976, 19402974147, 34523231688
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} A000041(k)^m * x^k / Sum_{k>=0} A000009(k) * x^k, then a(n, m) ~ exp(Pi*sqrt((2*m^2 - 1)*n/3)) * ((2*m^2 - 1)^(m - 1/2) / (2^(3*m - 1) * 3^(m/2) * m^(2*m - 1) * n^m)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 289 * sqrt(17/3) * exp(Pi*sqrt(17*n/3)) / (186624*n^3).
Showing 1-5 of 5 results.