A054440
Number of ordered pairs of partitions of n with no common parts.
Original entry on oeis.org
1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0
Herbert S. Wilf, May 13 2000
a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
- Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Wikipedia, Pentagonal number theorem
-
a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
-- Reinhard Zumkeller, Nov 15 2015
-
with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
A304873
G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).
Original entry on oeis.org
1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0
-
nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304878
G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).
Original entry on oeis.org
1, 0, 0, 6, 0, 18, 30, 60, 66, 258, 402, 606, 1266, 1866, 3744, 6864, 9648, 15432, 30510, 41166, 72342, 118140, 178800, 266262, 441462, 652164, 1006410, 1567692, 2309958, 3385554, 5321838, 7530462, 11128440, 16799958, 23916474, 35123964, 51357318, 72495126
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304988
G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k) * x^k.
Original entry on oeis.org
1, 0, 3, 4, 16, 20, 67, 84, 231, 324, 735, 1026, 2265, 3086, 6199, 8880, 16564, 23390, 42378, 59496, 103588, 146376, 244278, 344186, 564013, 788168, 1255201, 1758400, 2738833, 3812242, 5846114, 8092092, 12200957, 16848156, 24991705, 34365176, 50392543
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304987
G.f.: Sum_{k>=0} A000041(k) * x^k / Sum_{k>=0} A000009(k)^2 * x^k.
Original entry on oeis.org
1, 0, 1, -2, 2, -6, 3, -16, 17, -34, 47, -78, 153, -178, 373, -530, 954, -1410, 2280, -3896, 5908, -9988, 15170, -25908, 40659, -65136, 105967, -169056, 276483, -435624, 712052, -1139814, 1839535, -2955466, 4745201, -7689672, 12303439, -19866340, 31904000
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
A304989
G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k)^2 * x^k.
Original entry on oeis.org
1, 0, 3, 2, 16, 10, 59, 32, 187, 90, 519, 152, 1439, 164, 3525, -246, 8904, -2500, 21748, -10836, 53918, -36508, 131424, -115266, 328703, -336608, 812615, -957464, 2046225, -2634166, 5152190, -7145682, 13121677, -19039178, 33473773, -50395004, 86035125
Offset: 0
-
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
Showing 1-6 of 6 results.
Comments