cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054440 Number of ordered pairs of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 2, 4, 12, 16, 48, 60, 148, 220, 438, 618, 1302, 1740, 3216, 4788, 8170, 11512, 19862, 27570, 45448, 64600, 100808, 141724, 223080, 307512, 465736, 652518, 968180, 1334030, 1972164, 2691132, 3902432, 5347176, 7611484, 10358426, 14697028, 19790508, 27691500
Offset: 0

Views

Author

Herbert S. Wilf, May 13 2000

Keywords

Examples

			a(3)=4 because of the 4 pairs of partitions of 3: (3,21),(3,111),(21,3),(111,3).
		

Crossrefs

Programs

  • Haskell
    a054440 = sum . zipWith (*) a087960_list . map a001255 . a260672_row
    -- Reinhard Zumkeller, Nov 15 2015
  • Maple
    with(combinat): p1 := sum(numbpart(n)^2*x^n, n=0..500): it := p1*product((1-x^i), i=1..500): s := series(it, x, 500): for i from 0 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}]/Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)

Formula

G.f.: Sum[p(n)^2*x^n]/Sum[p(n)*x^n], with p(n)=number of partitions of n.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n)) / (64 * 2^(1/4) * n^(7/4)). - Vaclav Kotesovec, May 20 2018
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k / (1 - x^k) + y^k / (1 - y^k)). - Ilya Gutkovskiy, Apr 24 2025

Extensions

Corrected and extended by James Sellers, May 23 2000

A304873 G.f.: Sum_{k>=0} p(k)^4 * x^k / Sum_{k>=0} p(k)*x^k, where p(n) is the partition function A000041(n).

Original entry on oeis.org

1, 0, 14, 64, 528, 1696, 11616, 33600, 169072, 525760, 2069922, 5928066, 22259874, 59321760, 193797792, 526647420, 1566376990, 4012181104, 11456306798, 28263784110, 75995086336, 184440427360, 468750673616, 1104027571108, 2730165482640, 6239956155696
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} p(k)^m * x^k / Sum_{k>=0} p(k)*x^k, then a(n, m) ~ exp(Pi*sqrt(2*(m^2 - 1)*n/3)) * ((m^2 - 1)^(m - 3/4) / (2^(2*m - 3/4) * 3^(m/2 - 1/4) * m^(2*m - 1) * n^(m - 1/4))).

Crossrefs

Cf. A054440 (m=2), A260664 (m=3).

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[PartitionsP[k]^4*x^k, {k, 0, nmax}] / Sum[PartitionsP[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(3/4) * 3^(3/2) * 5^(13/4) * exp(Pi*sqrt(10*n)) / (2^22 * n^(15/4)).

A304878 G.f.: Sum_{k>=0} q(k)^3 * x^k / Sum_{k>=0} q(k)*x^k, where q(n) is A000009(n).

Original entry on oeis.org

1, 0, 0, 6, 0, 18, 30, 60, 66, 258, 402, 606, 1266, 1866, 3744, 6864, 9648, 15432, 30510, 41166, 72342, 118140, 178800, 266262, 441462, 652164, 1006410, 1567692, 2309958, 3385554, 5321838, 7530462, 11128440, 16799958, 23916474, 35123964, 51357318, 72495126
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2018

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=0} q(k)^m * x^k / Sum_{k>=0} q(k)*x^k, then a(n, m) ~ exp(Pi*sqrt((m^2 - 1)*n/3)) * (m^2 - 1)^(3*m/4 - 1/2) / (2^(2*m - 1/2) * 3^(m/4) * m^(3*m/2 - 1) * n^(3*m/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsQ[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (81*6^(1/4)*n^(9/4)).

A304988 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k) * x^k.

Original entry on oeis.org

1, 0, 3, 4, 16, 20, 67, 84, 231, 324, 735, 1026, 2265, 3086, 6199, 8880, 16564, 23390, 42378, 59496, 103588, 146376, 244278, 344186, 564013, 788168, 1255201, 1758400, 2738833, 3812242, 5846114, 8092092, 12200957, 16848156, 24991705, 34365176, 50392543
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 7^(3/2) * exp(Pi*sqrt(7*n/3)) / (768*n^2).

A304987 G.f.: Sum_{k>=0} A000041(k) * x^k / Sum_{k>=0} A000009(k)^2 * x^k.

Original entry on oeis.org

1, 0, 1, -2, 2, -6, 3, -16, 17, -34, 47, -78, 153, -178, 373, -530, 954, -1410, 2280, -3896, 5908, -9988, 15170, -25908, 40659, -65136, 105967, -169056, 276483, -435624, 712052, -1139814, 1839535, -2955466, 4745201, -7689672, 12303439, -19866340, 31904000
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.6096199212376592810929072080593393678131347423108390218672748044914523428584..., c = 0.4455996319406557616008349987776746416976798533740571426884585957313974660...

A304989 G.f.: Sum_{k>=0} A000041(k)^2 * x^k / Sum_{k>=0} A000009(k)^2 * x^k.

Original entry on oeis.org

1, 0, 3, 2, 16, 10, 59, 32, 187, 90, 519, 152, 1439, 164, 3525, -246, 8904, -2500, 21748, -10836, 53918, -36508, 131424, -115266, 328703, -336608, 812615, -957464, 2046225, -2634166, 5152190, -7145682, 13121677, -19039178, 33473773, -50395004, 86035125
Offset: 0

Views

Author

Vaclav Kotesovec, May 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^2*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]^2*x^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.6096199212376592810929072080593393678131347423108390218672748044914523428584..., c = 3.049014588253509415528984781833089943634060493523166258285691300445092167...
Showing 1-6 of 6 results.